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1 September 27

1.1 Parameterized Equations and Curves

Def.

• A parameterized, smooth curve (i.e. continuously differentiable up
to a specified order) in R2 (or R3) is a function α⃗((t)): R1→R2.

Ex. α⃗(t) =

[
t

1− |t|

]
is not differentiable at t = 0, and is therefore not a

parameterized curve. This point of non-continuous differentiability
is called a singularity.

Ex. α⃗(t) =

[
sin( 2t3 )
cos(t)

]
, t ∈ [0, 6π], self-intersects itself at t = 0 with the

tangent lines at differing times having different directions. While
α⃗((t))is continuously differentiable, we need to specify the time t0 at
which each of the tangent vectors at the intersection differ.

• The Tangent Vector is how this curve changes: α⃗′(t) = lim
n→∞

α⃗(t+h)−α⃗(t)
h .

Example: Let α⃗((t))=

α1(t)
α2(t)
α3(t)

, then α⃗′(t) =

α′
1(t)

α′
2(t)

α′
3(t)

.
• Tangent Line of α⃗((t))at t = t0 is y(s) = α⃗(t0) + sα⃗′(t0).

• A Singularity is a point on a parameterized curve when at least one
partial derivative is zero.

• The Speed of a parameterized curve α⃗((t))is s(t) := |α⃗′(t)| =
√

α′
1(t)

2 + α′
2(t)

2 + ....

• A curve is regular if α⃗′(t) ̸= 0⃗. Equivalently, s(t) ̸= 0.

A reparameterization of α⃗((t))is a curve B⃗(s) := α⃗(t(s)) where t(s) is
some increasing or decreasing function. otherwise it might not be
unique? – two values map to the same point? We say this function
doesn’t need to be monotonic?

A B

S

α

B⃗=α⃗◦t
t(s)

Ex.
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• α⃗((t))=

[
t3

t6

]
is not regular since at t = 0, α⃗′(t) = 0⃗

Remark: We can reparameterize α⃗((t))to a curve B⃗(s) using the param-

eterization s = t3. Then B⃗(s) =

[
s
s2

]
is regular since B⃗′(s) ̸= 0 ∀s ∈

domain.

• α⃗((t))=

[
cos(t)
sin(t)

]
is regular.

1.2 Curve Lengths

Def.

• The Length of α⃗((t))between t1 and t2 ∈ R1 is L = |
∫ t2
t1

|α⃗′(t)| dt |.

• The signed arclength of a curve α⃗((t))from t0 → t1 is S(t) =
∫ t1
t0

|α⃗′(u)| du .

• We say α⃗((t))is unit speed if |α⃗′(t)| = 1⃗ for all t ∈ domain.

Remark: When α⃗((t))is of unit speed, the length of α⃗((t))from t1 → t2
is L = t2 − t1.

• An curve is arclength parameterized if v(t) = |α⃗′(t)| = 1.

Theorem 1.1 Any regular curve has an arc-length parameterization. Equiva-
lently, for any regular curve R1 → R3, ∃ t: R1 → R1 that is increasing such
that B⃗ = α⃗ ◦ t has unit speed.

Proof. todo.

2 September 29

2.1 Frenet Frames

Def.[Frame] A frame along a curve α : R → R3 (also known as a moving frame
of α) is a family of orthonormal basis (e1(t), e2(t), e3(t)) such so that e3 = e1xe2.

• This is a ”frame” or ”moving frame” along a curve α(t).

• e⃗2 ⊥ e⃗1 along α(t).

• e⃗3 can be found with the cross product.

Lemma 2.1 For a frame (e1(t), e2(t), e3(t)), we have:

1. e′i(t) · ej(t) = −ei(t) · e′j(t)

2. e′i(t) · ei(t) = 0 (can be derived from 1.).
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Proof: ei(t) · ej(t) = δij [Property of orthonormal basis].

δij =

{
1, if i = j
0, otherwise

}
Which naturally follows from ei(t) and ej(t) forming an orthonormal basis of
α(t). Then d

dt [ei(t) · ej(t)] = e′i(t) · ej(t) + ei(t) · e′j(t) = d
dt [δij ] = 0.

Lemma 2.2 (e′1, e
′
2, e

′
3) = [e1, e2, e3]

 0 w12 w13

−w12 0 w23

−w13 −w23 0

. We define

 0 w12 w13

−w12 0 w23

−w13 −w23 0

 =

W and see that WT = −W .

Proof: Use the last lemma [left as an exercise].

2.2 Curvature and Torsion

Note. Together, curvature and torsion determine the shape of a curve.
Def. Suppose α : R → R3 is a regular curve parameterized by arclength.
Let T(t) = α′(t) be the unit tangent vector. We say k(t) = |α′′(t)| = |T ′(t)|
is the ”curvature”. In other words, the norm of the second derivative of α is
the curvature. But note, it must be parameterized by arclength (for this
definition to apply).

1. If k(t) = 0, for all t ∈ R, then α′′(t) = 0. ⇒ T (t) = α′(t) = constant.

2. Unit circle in R3: α(t) =

cos(t)sin(t)
0

, α′′(t) =

−cos(t)
−sin(t)

0

. Then α(t) =

−α(t) ⇒ k(t) = |α′′(t)| = | − α(t)| = 1.

3. Generalized Circle: α(t) = r

cos(t)sin(t)
0

 ⇒ α′(t) =

 t
r cos(t)
t
r sin(t)

0

 ⇒ α′′(t) =

−1
r2 α(t). Note α′(t) is in arclength parameterization. Therefore, k(t) =
|α′′(t)| = 1

r2 |α(t)| =
1
r2 ∗ r = 1

r and the curvature is a constant 1
r such

that the larger the circle (i.e. the larger the radius r), the smaller the
curvature.

Def. A curve that is biregular is both regular and k ̸= 0 (i.e. non-zero
curvature).

Theorem 2.3 Let α(t) be a biregular curve and have unit speed. Then there is a

unique moving frame (T⃗ (t), N⃗(t), B⃗(t)) such that α⃗′(t) = T⃗ (t), and (T ′, N ′, B′) =

(T,N,B)

0 −k 0
k 0 −τ
0 τ 0

 =


T ′ = k ∗N
N ′ = −kT + τB

B′ = −τN

[Frenet equation w/ first or-

thonormal basis vector being the velocity].
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Remark. We say (T,N,B) is the Frenet frame of α and τ is the torsion of α. k
is clearly the curvature of α. Using the Frenet equations.. τ = −B′ ·N = B ·N ′

[taken from N · (B′ = −τN) · N ] where N · N ′ = 1 from the properties of an
orthonormal basis. We can usually compute the curvature without a Frenet
Frame but kind of need it to compute the torsion. Ex. The Helix α(s) =cos(s/

√
2)

sin(s/
√
2)

s√
2

 has unit speed. Then, T ′(s) = α′′(s) = 1√
2

−sin( s√
2
)

cos( s√
2
)

0

 ⇒ N =

−1 ∗

cos(s/√2)

sin(s/
√
2)

0

.
Note that we need the −1∗ out in front so that k is positive – there’s no such
thing as ”negative” curvature. N is a unit vector? (must be – part of the or-
thonormal basis). Similarly [T, N, B] is a moving frame ⇐⇒ [T,N,B] is an
orthonormal basis ⇒ ||T || = ||N || = ||B|| = 1

⇒ k(s) = 1
2 and B = TxN = 1√

2

 sin(s/
√
2)

−cos(s/
√
2)

1

, and τ = N ′ ·B = 1
2 .

Def.

• < T,N > is the plane spanned by T⃗ and N⃗ and is termed the oscillating
plane (relates to torsion: how quickly this plan changes as we move along
the helix).

• < T,B > is the rectifying plane.

• < N,B > is the normal plane.

Question. For a non-unit speed curve α(t), how to compute the Frenet
frame, k, and τ?

α′(t) T (t) = α′(t)
|α′(t)| N(t) = T ′(t)

|T ′(t)|
normalize differentiate

N(t) = T ′(t)
|T ′(t)| → B(t) = T⃗ (t)xN⃗(t)

Theorem 2.4 For a non-unit speed curve α(t), (T ′, N ′, B′) = (T,N,B)

 0 −vk 0
vk 0 −vτ
0 vτ 0

,
where v = |α′(t)|. In particular, T ′ = vkN and B′ = −vτN .

Proof: Let s(t) be an arclength parameterization of α. Define B(s) := α(t(s))
has arclength parameterization where t(s) is defined to be the inverse of s(t);
t(s) = (s(t))−1. Then...

• T = B′(s) = α′(t)
v(t) and d

dtα(t(s)) = α′ ∗ t′ = α′ ∗ 1
s′ .

• T ′ = B′′(s) = d
ds [

α′(t)
v(t) ] =

d
ds [

α′(t)
v(t) ] ∗ t

′(s) = α′′(t)v(t)−α′(t)v′(t)
v3(t) = k ∗ N(s)

[last equality due to the Frenet Equation].
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• T ′(t) ∗ dt
ds = k ∗N(s) = k ∗N(t)

• T ′(t) = s′(t) ∗ k ∗N = v ∗ k ∗N .

Ex. α(t) =

etcos(t)etsin(t)
et

. Find the Frenet Frame, k, and τ .

α′(t) = et

√(2)cos(t+ π/4)√
2sin(t+ π/4)

1

 and |α′(t)| = et
√
3. We’ve proved T (t) =

α′(t)
|α′(t)| =

1√
3

√(2)cos(t+ π/4)√
2sin(t+ π/4)

1

.
Then α′′(t) = T ′(t) =

√
2
3

−sin(t+ π/4)
cos(t+ π/4)

0

 ⇒ N(t) =

−sin(t+ π/4)
cos(t+ π/4)

0

, and
we can simply write T ′(t) =

√
2
3N(t). And by construction,

√
2
3 = v(t)∗k(t) ⇒

k(t) =

√
2
3

et∗
√
3
=

√
2
3e

−t.

Now, we can finally solve for B: B = TxN = 1√
3

−cos(t+ π/4)
−sin(t+ π/4)√

2

 and B′ =

1√
3

 sin(t+ π/4)
−cos(t+ π/4)

0

 using B′ = −vτN ⇒ 1√
3
= vτ ⇒ τ = 1√

3
v = 1

3e
−t.

3 October 4

3.1 Review of Week 1

Def.

• Let α(t) : R → R3 is a space curve which maps a parameter t to a vector
in R3 where t ∈ I (where I is the interval of our domain).

• If α′(t) ̸= 0 for all t in domain (i.e. α(t)) is regular, and we can find an
arclength parameterization α(s) such that |α′(s)| = 1 (unit speed) for this
curve.

• We define T (s) = α′(s) to be the unit tangent vector.

• We define T ′(s) = α′′(s). If T ′(s) ̸= 0,∀s ∈ I, then the curvature is not
ever 0, and the curve is “biregular”.

• Note two critical properties of T(s) (i.e. a unit vector part of an orthonor-
mal basis).

1. |T (s)|2 = 1
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2. |T (s) · T ′(s)| = 1

• We define the ”normal vector” to the curve N(s) as the unit vector such
that T ′(s) = κN(s) where κ is the norm of T ′(s) so that N(s) has unit
length.

• κ(s) = |T ′(s)| is the curvature.

• We define the ”binormal vector” asB(s) = T (s)xN(s). Together [T (s), N(s), B(s)]
form an orthonormal basis ∀s ∈ I.

• We call [T (s), N(s), B(s)] a “frame” (Frenet Frame), and [T ′(s), N ′(s), B′(s)] =

[T (s), N(s), B(s)]

0 −k 0
k 0 −θ
0 θ 0

, which we define as the “Frenet Equa-

tion.” This equation allows us to solve for N,B, κ, θ given only T .

• θ is called the “torsion” of the curve (tendency to move out of the plane
spanned by N and T).

• We can solve for θ: N ′ = −kT + Bθ ⇒ B · N ′ = −κB · T + θB · B ⇒
θ = B · N ′. Alternatively, we know B′ = −θN ⇒ B′ · (−1) ∗ N =
−θN · (−1) ∗N ⇒ θ = −B′N .

3.2 Helix, Torsion, and Planar Curves

Recall. Helix α(s) = [cos(s/
√
2), sin(s/

√
2,−s/

√
2], κ(s) = 1/2, θ(s) = 1/2.

Ex. Generalized Helix: α(s) = [r cos s√
r2+h2

, r sin s√
r2+h2

, h s
r2+h2 ] where r > 0,

h ∈ R, and arc-length parameterized. Then

1. κ(s) = r
r2+h2 is a constant such that κ(s) > 0.

2. θ(s) = h
r2+h2 is a constant such that θ(s) can be any arbitrary value.

Proposition 3.0.1 θ ≡ 0 ∀s ⇐⇒ α(s) is contained within a plane.

1. θ measures how the oscullating plane moves away from itself.

2. if θ ≡ 0, oscullating plane stays in itself, and α(s) is a planar curve (i.e.
convined to a plane).

3. we need to show that α(t) stays within the oscullating plane.

Proof ⇐ α(s) is contained within a plane ⇒ T (s) and N(s) in the same plane
(i.e. form the plane) ∀s.
⇒ B(s) is a constant vector since it will always be ⊥ to the plane spanned by
T and N. ⇒ B’(s) = 0 ⇒ θ = 0.
⇒ B′(s) = −θN(s) = 0 ⇒ B(s) is a constant. ⇒ T(s)N(s) is in the same plane
orthogonal to B(s) [otherwise, B(s) wouldn’t be a constant] ⇒ α(s) is in the
same plane.
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We could also say (α ·B)′ [note this is 0 if α ⊥ B] = α′B + αB′ = 0 ⇒ α ∈ B⊥

[Using
∫ t

t0
(α ·B)′dt ⇒

∫ t

t0
0dt]

Proposition 3.0.2 If α(s) is planar, and κ(s) = k ̸= 0 (i.e. curvature is a
constant), then α(s) is contained in a circle of radius 1

k . Assume α(s) has
arclength parameterization.

Proof: Let B(s) = α(s) + N(s)
κ , B′(s) = α′(s) + N ′(s)

κ = T (s) + N ′(s)
κ(s) [Recall

N ′ + T = −κ(s)]. We’d like to show B(s) is a constant.

⇒ B′(s) = T (s) − T (s), so B(s) is a constant; B(s) = P = α(s) + N(s)
κ , and

|α(s)− P | = |N(s)
κ = 1

κ which is the equation of a circle centered at P of radius
1
k .

3.3 Unique Determination of Curves and Rigid Motion

Goal: For biregular curve, functions κ(s) and θ(s) uniquely determine α(s) up

to rigid motion (isometry): X⃗ → A · x⃗+ b.

1. X⃗ is a point x ∈ R3.

2. A · x⃗+ b is called “rigid motion” if A is an orthogonal matrix and det(A)
= +1. b is a constant vector.

Remark. If det(A) = -1, then the orientation of the space is reversed. If det(A)
= 1, then orientation is preserved, and this is called “orientation preserving”.
One can tell orientation is reversed by looking at the basis vectors (and if the
right-hand rule is consistent).
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Theorem 3.1 Given differentiable functions κ(s), θ(s), κ(s) > 0, and θ(s) :
I → R3, ∃ a unique biregular curve [up to rigid motion] α(s) : I → R, arclength
parameterized, with curvature equal to κ(s) and torsion equal to θ(s).

1. Easy to see that rigid motion preserves κ(s), θ(s) [invariant to rigid motion
transformations].

2. Not too hard to show that given α(s), ᾱ(s) with κ(s) = κ̄(s) and θ(s) =
θ̄(s), then ∃ a rigid motion that takes α to ᾱ(s). The question becomes
how to map this rigid motion.

(a) α(0) → ᾱ(0) (i.e. map a certain point from α to ᾱ.

(b) [T (0), N(0), B(0)] → [T̄ (0), N̄(0), B̄(0)] (i.e. map the Frenet frame
at that point). It’s not affected by the affine transformation A.

3. Harder to show the existence of α(s) given κ(s), θ(s). Given a κ(s) and a
θ(s), if we can construct a frame with these values, we would be able to
find a curve with the specified curvature and torsion.

4. We would need to solve for a moving frame [T(s), N(s), B(s)] such that

[T ′, N ′, B′] = [T,N,B]

0 −k 0
k 0 −θ
0 θ 0

. We call F (s) = [T,N,B] and

W (s) =

0 −k 0
k 0 −θ
0 θ 0

.
Once we solve this equation, we can get [T, N, B], and can inte-
grate T to get α.

Proof: F ′(s) = F (s)W (s), so existence of α(s) follows from the existence of
solutions to the second order, LTI ODE. Note WT = −W . Then we have
(FFT )′ = F ′FT = F (F ′)T = FWF ′ + F (FW )T . Note: If A is orthogonal,
A∗AT = ATA = I. Then we have, = FWFT +FWTFT = F (W+WT )FT = 0.
So FFT must be a constant.

We now proceed with the mapping of a point (i.e. 0). F (0)FT (0) = I ⇐⇒ we
choose T (0), N(0), B(0) to be an orthonormal basis ⇒ F (s)FT (s) = I.

Note, we have the freedom to choose the base point that we map by the rigid
motion transformation as well as the direction of the curve (i.e. we can invert
the direction) that has the same curvature and torsion.

This is somewhat remarkable. We simply are given a curvature, and
torsion value, we choose a base point, and we will get a biregular
curve going through this base point. We get the rest of the curve, along
with the Frenet frame at this base point from following the above procedure
[integrate T(s) to get α(s)]. Solving the LTI, second order ODE, and setting its
initial conditions sets the base point of the curve.
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Corollary 3.1.1 α(s) : I → R3, arclength param, has κ(s) = κ, θ(s) = θ for
s ∈ I, then α(s) must be the generalized helix up to a rigid motion transforma-
tion.

Remark: In the case of planar curves, there is another natural choice of N(s),
namely to rotate T (s) counter clockwise by 90◦. Then T ′(s) = κ(s)N(s), and
this choice of formulation allow κ(s) to have a negative sign.

Note: κ > 0 in the first image because T ′ is increasing ⇐⇒ points inside the
curve (i.e. T is increasing). κ > 0 ⇐⇒ N and T’ point in the same direction.
In these cases, the polar angle θ always increases [independent of which axis you
choose to define θ].

Assume T (s) = [cos θ(s), sin θ(s)], then T’(s) = θ′(s)[− sin θ(s), cos θ(s)] = θ′(s)N(s).
So κ(s) = θ′(s) ⇒ how θ changes with the curve (is the angle increasing or de-
creasing)?

In this view, the geometric meaning of κ(s) for a planar curve is the speed
at which the angle of T changes. [independent of whichever direction (or axis)
you fix to measure θ].
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4 October 6

4.1 Directional Derivatives, Vector Fields

Def. Directional Derivatives

• f : U ⊂ Rn → R, differentiable at any point ∀p ∈ U where U is an open
set (open set is the generalization of the “open interval” to a space.

• δf
δxi

|p or the partial of f with respect to xi at point p = lim
h→0

f(p+h∗xi)−f(p)
h .

• e.g. f(x1, ..., xn),
δf
δx1

|[a1,a2,...,an] = limh → 0 f(a1+hx1,a2,...,an)−f(a1,...,an)
h .

• More generally, for an arbitrary vector v ∈ Rn, lim
h→0

f(p+hv)−f(p)
h is the

derivative of f at point p in the direction of v = Dvf |p.

• Assume v = (v1, v2, ..., vn)
T , then Dvf |p =

n∑
i=1

vi
δf
δx = v ·∇f |p, where ∇f |p

is the gradient of f at point p; ∇f =< δf
δx1

, .., δf
δxn

>

• We can view the derivatives of f at p as a linear map: Df |p : Rn → R,
and carry this definition over to different directions v: < v1, v2, ...vn >T=

v → Dvf |p =
n∑

i=1

vi
δf
δxi

.

Def. Vector Fields

• Now we can allow v to vary with p ∈ U (i.e. v =

 3x
x+ y
3

 (i.e. can change

smoothly w.r.t. changes in p) to get a scalar function Dvf that varies with
p [this will be the directional derivative of how f changes with respect to
the directional field defined by v].

• We say v is a vector field. f is simply a function that maps an element
of Rn → R. Later, we will call f a 1-form.

• Directional derivative of function f along a given vector v (at a

specific point x): Dvf(x) =
n∑

i=1

vi
δf
δxi

and the general field [describes this

function for all points] is denoted by v[f ].

• the following notation is equivalent: ∇vf = Dvf = v · ∇f = v[f ].

– v[af + bg], a, b ∈ R, f, y are functions operating on U , v is a vector
field (i.e. unique vector for each point p ∈ U), then v[af + bg] =
av[f ] + bv[g].
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– In other words, we take the dot product between the vector field
v and the vector mapping f, y : Rn → Rn, and compute the dot
product of the gradient field of [af + bg] with the vector field defined
by v.

Theorem 4.1 (Leibniz Rule) v[f∗g] = v[f ]∗g+f∗v[g] (i.e. v[product of two functions]).

Proof:

Dvf = v[fg] =

n∑
i=1

vi
δ

δxi
(fg)

=

n∑
i=1

vi ∗ (
δf

δxi
∗ g + f ∗ δg

δxi
)

=

n∑
i=1

vi(
δf

δxi
) ∗ g +

n∑
i=1

vif(
δg

δxi
)

= v[f ]g + fv[g]

This is clearly a scalar output: v[f ] is the directional derivative of
function f in the direction of v, and g is a function that maps a point
to a scalar value. Therefore at all pointsd, this will be a single scalar
value.

4.2 Tangent Space

Def.[Tangent Space of p = vectors based at p] is TpRn ∼= Rn (i.e. the tangent
space is isomprphic – like a structure-preserving bijection). It’s the space of
vectors tangent to a given point on a surface.

Notation:

• ∂
∂xi

is the ith orthonormal basis vector spanning a n-dimensional space.

For example in R3, ∂
∂x1

= [1, 0, 0], ∂
∂x2

= [0, 1, 0], and ∂
∂x3

= [0, 0, 1].

Ex.

• Let v = [v1, v2, ..., vn]
T ∈ TpRn be a vector in the tangent space of point

p. Then v =
n∑

i=1

vi
∂

∂xi
.

• Then the directional derivative of f in the direction of v at a point p is

simply denoted by v[f ] = ∇vf =
n∑

i=1

vi
∂f
∂xi

• i.e. v = {1, 0, 0, ...0 >T∈ TpRn, then v = ∂
∂x1

.

13



• Let v = x1
∂
x1

+ 2x2
∂

∂x2
be a vector field and f(x1, x2) = x1x

2
2, ∇f =<

x2
2, 2x1x2 >T=< ∂f

∂x1
, ∂f
∂x2

>T be a function on our space. Then the direc-
tional derivative of f in the direction specified by the vector field is:

v[f ] = ∇vf = x1
∂f

∂x1
+ 2x2

∂f

∂x2

= x1 ∗ x2
2 + 2x2 ∗ 2x1 ∗ x2

= 5x1x
2
2

4.3 Co-Tangent Space and 1-forms

Def.[Cotangent Space].
The co-tangent space of a point in the tangent plane, denoting the co-tangent
space at a point p as T ∗

pRn is the set of linear functions (also called “1-forms”)
that map a vector from the tangent space to R: {Linear functions: α|TpRn →
R}.

Background[Dual Space]

• Any vector space V has a corresponding dual vector space (or dual space
for short).

• The dual space consists of all linear forms on V. A linear form is a linear
function that maps an element of V to an element of R.

• A one form takes one vector from V and maps it to R

• A zero form takes zero vectors from V and maps it to R (this is the set
of reals mapping back onto themselves).

• In general, a k-form on a vector space V over a Field F that maps k vectors
from V to a scalar (i.e. an element of F).

• Typically the cotangent space is defined as the “dual” of the tangent space.

Def.[1-form]
Denote the co-tangent space of a point p as T ∗

pRn. Than an element of this
set is called a “1-form”: α|TpRn → R. This mapping is specified by the basis
vectors at the point p: { ∂

∂xi
}|p.

You’ve seen this before: df = ∂f
∂xdx + ∂f

∂y dy is a one form where dx = ∂
∂x

and dy = ∂
∂y are the basis vectors in the x and y directions respectively and ∂f

∂x ,
∂f
∂y is the linear combination of the basis vectors at point p.

Summary with Examples

• tldr: The co-tangent space is the set of linear functions α (or 1-forms)
that map elements of our tangent space back into the set of reals.
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• For 1-form α, α(
n∑

i=1

vi
∂

∂xi
) =

∑n
i=1 viα(

∂
∂xi

).

Note: α acts on the basis vectors ∂
∂xi

.

• To formalize the mapping of independent dimensions from the tangent
space to a scalar, we denote {dxi} as the cotangent vector.

dxi(
∂

∂xi
) = δij [remember δij = 1 ⇐⇒ i = j, otherwise 0].

• We say {dxi} are the dual of { ∂
∂xi

} as {dxi} maps ∂
∂xi

to an element of
the reals.

• e.g. dx1(
n∑

i=1

vi
∂

∂xi
) = v1.

Theorem 4.2 Any α⃗ =
∑n

j=1 αjdxj is in the co-tangent space.

Proof:

α(

n∑
i=1

vi
∂

∂xi
) =

n∑
i=1

αvi(
∂

∂xi
)

=

n∑
i=1

vi

n∑
j=1

αjdxj
partial

∂xi

=

n∑
j=i

vi

n∑
j=1

αjδij

=

n∑
i=1

viαi

So in summary we have α⃗ =
∑n

j=1 αjdxj [a linear function] and
n∑

i=1

vi
∂

∂xi
[vector

in tangent space] =
∑n

i=1 viαi [element of R]. So we have proved α⃗ is a 1-form
in our co-tangent space.

Def.[Differential 1-form]

Let α =


α1

α2

...
αn

, v =


v1
v2
...
vn

, and α(v) =
[
α1, α2, ...αn

] 
v1
v2
...
vn

.
If we allow α⃗ to vary with p – i.e. at each point, we pick a linear function
– then α⃗ is called a “differential 1-form”. This is the same as a normal 1-form,
but now the mapping varies depending on which “tangent space” we’re at.
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More formally, α⃗|p ∈ T ∗
pRn.

Ex.

• α = x2dx1 + 3x1dx2 is a differentiable 1-form.

• v = (x1+x2)
∂

∂x1
+x1x

2
2

∂
∂x2

be a vector field [defined at each point on R2].

Clearly v ∈ TpR2 as v is tangent to R2 at each point.

• α(v) is a “smooth 1-form”: it is a smooth function that outputs a scalar
at each point.[
x2, 3x1

] [x1 + x2

x1x
2
2

]
= x1x2 + x2

2 + 3x1x
2
2

• α(v)|(0,0) = α|(0,0)(v|(0,0)) = 0.

– α|(0,0) restricts the differential 1-form to the value at point p = (0,0).

– (v|(0,0)) selects the vector from the vector field at point p = (0,0).

4.4 Line Integrals

Define γ : I → Rn to be a smooth curve γ(t) =


γ1(t)
γ2(t)
...

γn(t)

 with tangent vector


γ′
1(t)

γ′
2(t)
...

γ′
n(t)

 ∈ Tγ(t)Rn [i.e. the vector of partials of γ(t) defines the tangent space

along curve γ(t)].

We can define a “1-form” along γ: α =
n∑

i=1

αi(γ1, γ2, ..., γn)dxi|γ(t).

1. α is a differentiable 1-form: therefore, it depends on the location of the
point p.

2. If we restrict α to run along γ, then we need to use the parameterization
of γ when computing the transformation induced by α. This is denoted
by α(γ1, γ2, ..., γn).

Taking this a step further, we can integrate the 1-form along γ:∫
γ

α =

n∑
i=1

∫ b

a

αi(t)γ
′
i(t)dt

= sum along all n-dimensions integrating along the curve

=

∫ b

a

α(γ′(t))dt

16



Ex.
γ(t) =< t2, t3 >, t ∈ (0, 1] is our curve parameterized with t, α = dx1− 1

x1
dx2

is our 1-form parameterized by x1, x2. We therefore need to substitute
< t2, t3 > into our 1-form to find the linear combination factors along the
points of our curve.

We’d like to compute the integral of α along γ which is equivalent to
∫
γ
α. Then:

• γ′(t) =< 2t, 3t2 >

• α|γ(t) = dx1 − 1
t2 dx2.

• Recall dxi is the cotangent vector such that dxi(
∂

∂xi
) = δ(ij). You can

think of ∂
xi

as the ith orthonormal basis basis component for how a function
changes with respect to the ith dimension. dxi is simply an element of the
dual that maps this vector to 1 ⇐⇒ i = j, otherwise 0.

• Then α(γ′(t)) = 2t− 3 t2

t2 = 2t− 3.

• And
∫
γ
α =

∫ b

a
α(γ′(t)) =

∫ 1

0
2t−3dt = t2−3t|10 = −2 which is the integral

of this 1-form along our curve γ(t).

Note: The integral is independent of parameterization!

Theorem 4.3 The integral along a curve is independent of your choice of pa-
rameterizations:

∫
β
α =

∫
γ
α [orientation does matter though – up to a difference

in sign].

Proof : Assume β, γ have the same orientation, t(s) is increasing. Then B
ds =
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dγ
dt ∗ t′(s) and∫

β

α =

∫ d

c

α(
dβ

ds
)ds

=

∫ d

c

α(
dγ

dt
∗ t′(s))ds

=

∫ d

c

t′(s)α(
dγ

dt
)ds [t′(s) is a scalar in a linear fn. – can pull out]

=

∫ b

a

α(
dγ

dt
)dt

=

∫
γ

α

Def.[Special 1-form]:
A special 1-form is when α = df for some function f. Recall this from 18.02.
Let f : U ⊂ Rn → R. Then if α = df , α = ∂f

∂xdx + ∂f
∂y dy + ... where aj = ∂f

∂xj

and dx is simply the cotangent vector that maps ∂
∂x to 1. We say df acts on an

element of the tangent space by df( ∂
∂xi

) = ∂f
∂xi

.

• Hence, df(v) = df(
n∑

i=1

vi
∂

∂xi
) =

n∑
i=1

vi
∂f
∂xi

= ∇f · [dx1, dx2, ..., dxn]

• Simply, df =
n∑

i=1

∂f
∂xi

∗ dxi for some function f.

Theorem 4.4
∫
γ
df = f(b)− f(a) [only depends on the endpoints].

γ : [a, b] → Rn [left as an exercise].
Def. 1-form α is called exact if α = df , f : function.

5 October 11

We now shift our focus from curves in R2 to surfaces in R3. Notably, the distance
between two points when traveling on a surface as well as the curvature and
torsion of surfaces. in R3.

5.1 Surfaces in R3

Def.[Exterior Derivative]
Also known as the “differential”. This is simply how a function changes with
respect to changes along basis vectors that span the tangent space at a point.

Def.[Surface]
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A surface is α : U ⊆ R2 → R3 [U is an open subset of R2], and we assume α is
smooth (i.e. differentiates).

We can now define our notion of regularity on a surface.
Let (u,v) parameterize the open subset U. Then α maps points of U onto a
surface in R3. We say that surface is regular if ∂α

∂u and ∂α
∂v are linearly inde-

pendent at each point.

Note As we now live in R2, it takes two basis vectors to fully describe the
tangent space (i.e. the tangent plane) at a point p. If these vectors are not
independent, then the tangent plane collapses to a line, and and the surface is
not regular.

Preliminaries.

α(u, v) =

α1(u, v)
a2(u, v)
a3(u, v)

 is a surface which maps U ⊂ R2 → R3. We denote ∂α
∂u as

αu and ∂α
∂v as αv.

Ex.
The tangent space to a point on our surface at (u,v) is spanned by: ∂α

∂u =∂α1

u (u, v)
∂α1

u (u, v)
∂α1

u (u, v)

 and ∂α
∂v =

∂α1

v (u, v)
∂α1

v (u, v)
∂α1

v (u, v)

.
We call the 2-dimensional plane spanned by αu, αv the tangent plane at α(u, v).

Def.[Derivative Along a Surface]
The derivative of the surface α is Dα : R2 → R3. Simply, it’s a linear map
represented by the matrix of basis vectors spanning the tangent plane: (αu, αv)

=

∂α1

∂u , ∂α1

∂v
∂α2

∂u , ∂α2

∂v
∂α3

∂u , ∂α3

∂v

 and is a linear approximation for how a two dimensional input

in the domain

[
ui

vi

]
will cause the output of the function to change.

Def.[Directional Derivative Along a Surface]

For any w ∈ R2, Dwα =

Dwα1

Dwα2

Dwα3

. This is the directional derivative of α in the

direction along w. Dwα = Dα(w). It representes how each component would

change by moving in the

w1

w2

w3

 direction.

Ex.
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Let w =

[
w1

w2

]
= w1

∂
∂u +w2

∂
∂v . Then Dα(w) = [au, av]

[
w1

w2

]
= w1αu +w2αv =

scalar value.

What is the image of Dα? The input dimensionality is R2, but what space does
the output belong to? Dα maps points to R3. Im(Dα) = the plane spanned by
[αu, αv] (i.e. the tangent plane’s basis vectors, each of which live in R3).

Ex.

1. Let S2 =

sinu cos vsinu sin v
cosu

, u ∈ (0, π), 0 < v < 2π.

Left as an exercise: Check this is a regular surface. Recall a regular
surface is one in which the tangent plane at each point is well-defined.
You can verify this by computing two tangent vectors at each point
on the surface and showing that they are linearly independent.

We would need to exclude certain points to make this surface regular
(non-linearly independent tangent vectors).

Note: (u, v) can take on all real numbers, but this parameterization
[along with u ∈ (0, π, 0 < v < 2π) will result in (u, v) missing the
longitude of the sphere [tangent vector is 0 along this curve ⇒ not
regular].

One cannot find a parameterization of a sphere that covers every point.

2. f : U ⊂ R2 → R. α(u, v) =

 u
v

f(u, v)

 , αu =

 1
0
fu

, αv =

 0
1
fv

.
αu and αv are clearly linearly independent, therefore, the graph (i.e. α,

synonymous with function) yields a regular surface.

To rigorously prove linear independence, one would show:

aαu + bαv = 0 ⇒

 a
b

afu + bfv

 = 0⃗ ⇐⇒ a, b = 0].

3. Surface of Revolution. Denote function f: I → R, f > 0 [f takes positive
values]. Then take the graph x = f(z) in the x, z plane and rotate it
about the z-axis. Then we get a “surface of revolution.

When can we say this is a regular surface?

Compute the two tangent vectors: α(u, v) =

f(u) cos vf(u) sin v
u

, u ∼ z, v ∼ θ

[circular coordinates r, θ parameterize a revolutory surface].
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αu =

f ′(u)covv
f ′(u)sinv

1

, αv =

− sin vf(u)
cos vf(u)

0


Homework exercise: when this surface is regular? When are these two

tangent vectors linearly independent?

4. Tangent Developable. Let γ(s) [I → R3] be a regular curve parameterized
by arclength. Define α(u, v) = γ(u)+v ·γ′(u). u ∈ I. Remember, (u,v)
are the basis vectors of your domain ∈ R2.

Then αu = γ′(u) + vγ′′(u) and αv = γ′(u){
u ∈ I, v ̸= 0 (is regular)

v = 0 (not regular)

It is regular when v ̸= 0, because then we get a two dimensional vector
space. Otherwise when v = 0, it collapses down to a single dimension.

5. Implicitly Defined Surfaces. Let f be a 1-form: f : U ⊆ R3 → R and
consider the level set S = {(x1, x2, x3)|f(x1, x2, x3) = 0}

f(x,y,z) = z is a 1-form and S = the x-y plane.

Note. f(x,y,z) = 0 when x, y, z ∈ S.

For a different function defined as f(x,y,z) = 0, S = {(x, y, z) ∈ R3} = R3.

5.2 Implicitly Defined Surfaces

Theorem 5.1 If ∇f ̸= 0 at p ∈ U ⊆ R3, then we can choose coordinates at
p so that level set equals a graph near p [i.e. a function near p]. Allows us to
check whether the level set can be a regular surface (check if ∇f = 0 (or not)).

Proof: Implicit function theorem.

Note: Rather than defining a surface, differentiating with respect to the basis
vectors in the domain to find a parameterization of the tangent vectors, and
then analyzing if those tangent vectors are linearly independent (or not). If
our surface is defined as a level set of a surface in R4, we simply look at
whether ∇f is 0⃗ or not. This is because df = 0 at a level surface, so we have
−∂f

∂z dz = ∂f
∂xdx + ∂f

∂y dy. So long as ∇f ̸= 0, we’ll have linearly independent
tangent vectors.

Note: In this case, we can define one surface to be the level set of another
function. Then if ∇f |p ̸= 0, the surface defined by our level set is regular. Note:
on a surface in R4, for a level set, we effectively lose one dimension ⇒ surface
in R3 with a tangent plane in R2. Looking at ∇f will determine if the vectors
spanning the tangent plane in R2 are linearly independent..
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Ex. 1
Let f be a function: f(x, y, z) = x2 + y2 − z2 and S be the 0-level set of f:
S = f−1(0) = {(x, y, z)|x2 + y2 − z2 = 0}.

We can compute ∇f =

∂f
∂x
∂f
∂y
∂f
∂z

 =

 2x
2y
−2z

 =

00
0

 ⇐⇒ x = y = z = 0 .

So S/{(0, 0, 0)} is regular.

Ex. 2
x2 + y2 − z2 = 0
x2 + y2 = z2

|z| =
√
x2 + y2 (also a surface of revolution). In our homework, we will see a

torus can also be represented in this way (torus such that the surface is a level
set of this function).

Question: What do you mean by level set equals a graph near p?

Def [Unit Normal]
Let αu, αv be vectors spannign our tangent space. Then the unit normal vector
= n = αuxαv

||auxαv|| .

Note: n⃗ is orthogonal to αu, αv, and (αu, αv, n) is positively orientated). n
is the normal vector of the tangent plane, so it is independent of the parame-
terization (up to a sign).

Foreshadowing:
If we can understand how the unit normal changes with the surface, we can
understand how the surface is bending or changing at a point.

Theorem 5.2 For an implicitly defined surface, n = ± ∇f
||∇f || .

Proof:
α : (u, v) → R3 is a regular parameterization of the level set f−1(0).
αu, αv : are tangent vectors. Then f(α(u, v)) = 0 [α(u, v) is a parameterization
of the 0-level set of f ⇒ f(any element in this set) = 0].
If we move tangent to the 0-level set... then we remain on the 0-level set. So
then, ∇f · αu = 0 = ∇f · αv.
Since ∇f ⊥ αv, ∇f ⊥ αv, ∇f is normal to αu and αv and is therefore a
multiple of n⃗. So n = ± ∇f

||∇f || [also we learned in 18.02 that the level set is ⊥
the gradient...].
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5.3 First Fundamental Form

Def.[First Fundamental Form]
I is a positive definite, bilinear function on T(u,v)R2 w, z ∈ T(u,v)R2, then
I(w, z) = Dα(w) ∗Dα(z).

Notation:

• Recall Dα(w) = Dwα = directional derivative of α along the direction of
w.

• bilinear function: a function of two variables that is linear with respect to
each of its arguments, separately.

bilinear form = bilinear function = bilinear map : VxV → K

Vector space V, field K.

I =

[
Dα(u) ·Dα(u), Dα(u)Dα(v)
Dα(v) ·Dα(u), Dα(v) ·Dα(v)

]
=

[
αuαu, αuαv

αvαuαvαv

]
Matrix is clearly symmetric, and is positive definite matrix: zTIz > 0 for all
column vectors z.

Another interpretation: Let u, v be basis vectors in U ⊆ R2. Then α(u, v)
maps each point in U (parameterized by u, v) to a point on the surface S ∈ R3.
The basis vector u is transformed to the vector Dα(u) = αu which along with
αv spans the tangent plane at a point.

Any vectors in the tangent plane, v, t⃗ = (xαu + yαv) is a linear combination
of the basis vectors spanning this plane. Then, we can define the dot product
in R3 confined to the tangent plane spanned by αu and αv: for a vector of the
tangent plane t⃗ = (⃗t · t⃗) = (xαu+yαv) · (xαu+yαv) = Ex2+2Fxy+Gy2 where
E = αu · αu, F = αu · αv, G = αv · αv.

E,F,G clearly depend on the point P ∈ S, and we map a point r ∈ U to a
point α(r) = p ∈ S. So, E, F, G can be viewed as functions on U (i.e. the
space spanned by (u,v)). Knowing E, F, G is equivalent too knowing the first
fundamental form.

From Wikipedia The first fundamental form is the inner product on the tan-
gent space of a surface in three-dimensional Euclidean space which is induced
canonically from the dot product of R3. It permits the calculation of curvature
and metric properties of a surface such as length and area in a manner consis-
tent with the ambient space.

In other words, it lets us calculate curvature and length by approximating these
quantities on the tangent plane of a curved surface.
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Ex.
Let X(u,v) be a parameteric surface. Then the inner product of two tangent
vectors Xu, Xv is:

I(aXu + bXv, cXu + dXv) = ac < Xu, Xv > +(ad+ bc) < Xu, Xv > +bd < Xu, Xv >

= Eac+ F (ad+ bc) +Gbd

Where E, F, G are the coefficients of the first fundamental form. I(x, y) can

also be represented as xT

[
E F
F G

]
y.

The first fundamental form completely describes the metric properties of a sur-
face. It enables one to calculate the lengths of curves on the surface and the
areas of regions on the surface.

Intuition: We can approximate the distance on a curved surface by computing
the tangent plane at each point, computing a small “distance” on this tangent
plane, and then moving over by a small amount to the next point on the surface
and repeating this process.

Def. [Line Element] The line element (or length element) can informally be
thought of as a line segment associated with an infinitesimal displacement vec-
tor in a metric space. The length of the line element, which may be though of
as a differential arc length, is a function of the metric tensor and is denoted by ds.

Def.[Metric Tensor] A metric tensor (or simply metric) is an additional struc-
ture on a manifold M (such as a surface) that allows defining distances an angles,
just as the inner product on a Euclidean space allows defining distances and an-
gles there. More precisely, a metric tensor at a point p of M is a bilinear form
defined on the tangent space at p (that is, a bilinear function that maps pairs of
tangent vectors to real numbers), and a metric tensor on M consists of a metric
tensor at each point p of M that varies smoothly with p.

Ex.[Line Element as a fn. of First Fundamental Form]:

ds2 = Edu2 + 2Fdudv +Gdv2

The square of the line element is equal to the first fundamental form [i.e. dot

product of two vectors in the tangent space]: a · b = cos(θ)
||a||||b||

Ex.[Lengths on Manifolds/Surfaces]. The length of a curve on a sphere.

We can parameterize a sphere with X(u, v) =

cosu cos vsinu sin v
cos v

 such that (u, v) ∈

[0, 2π)x[0, π].
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We can find the basis vectors of the tangent space to each point on the sphere:

Xu =

− sinu sin v
cosu sin v

0

 and Xv =

cosu cos vsinu cos v
− sin v


Therefore, the first fundamental form is found by taking the dot product (i.e.
metric tensor) between the basis vectors spanning the tangent space: E =
Xu · Xu = sin2 v, F = Xu · Xv = 0, G = Xv · Xv = 1. Therefore, I(u, v) =[
sin2 v 0
0 1

]
.

The equator of a unit sphere can be parameterized with (u(t), v(t)) = (t, π
2 )

with 0 ≤ 0 ≤ 2π. Then we may use the line element ds to calculate the length
of this curve:

∫ 2π

0

√
ds2 =

∫ 2π

0

√
E(

∂u

∂t
)2 + 2F

∂u

∂t

∂v

∂t
+G(

∂v

∂t
)2dt

= int2π0
√

E12 + 2F1 ∗ 0 +G(0)2dt

= int2π0 | sin v|dt

= 2π sin(
π

2
) = 2π

This comes from the tangent plane being a good approximate to the
surface for infinitesimally small changes in the basis vectors du, dv .

6 October 13

6.1 Review of 1st Fundamental Form

Def.[Symmetric Bilinear Forms]
Given arbitrary “1-forms” α, β ∈ T ∗

pRn, we can compose them to yield a sym-
metric, bilinear form: α · β that is given by:

α · β(X⃗, Y⃗ ) =
1

2
[α(X⃗) · β(Y⃗ ) + α(Y⃗ ) · β(X⃗)]

such that X⃗, Y⃗ ∈ TpRn.

Ex.
α · β(X,X) = 1

2 (α(X)β(X) + α(X)β(X)) = α(X)β(X)
Note: it’s symmetric, so α · β(X,Y ) = α · β(Y,X)

Ex.
In R2, define “1-forms”: α = x1dx1 − dx2, β = x1x2dx2 and vectors in the
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tangent space at point p: X = ∂
∂x1

− x2
∂

∂x2
. Y = ∂

∂x2
.

Then α(X) = x1 + x2, α(Y ) = −1 and β(X) = −x1x
2
2, β(Y ) = x1x2.

So

α · β(X,Y ) =
1

2
[(x1 + x2)(x1x2) + (−1)(−x1x

2
2)]

=
1

2
[x2

1x2 + x1x
2
2 + x1x

2
2]

=
1

2
[x2

1x2 + 2x1x
2
2]

Consider if we do the function composition first:

α · β = (x1dx1 − dx2) · x1x2dx2) = x2
1x2dx1dx2 − x1x2(dx2)

2

So the basis for the new form (i.e. the composition of α and β) is dx2
1 = dx1dx1,

dx1dx2 = dx2dx1, dx
2
2 = dx2dx2.

Ex.
The dot product ⟨· , ·⟩ ⊆ Rn is a symmetric bilinear form.

How is the dot product represented under our basis dx2
1, dx1dx2, dx

2
2?

⟨· , ·⟩ = dx2
1 + dx2

2 + ...+ dx2
n is the new basis. Take two vectors in the tangent

space:

⟨
n∑

i=1

ai
∂

∂xi
,

n∑
i=1

bi
∂

∂xi
⟩ =

n∑
i=1

aibi

= (dx2
1 + ...+ dx2

n)(

n∑
i=1

ai
∂

∂xi
,

n∑
i=1

bi
∂

∂xi
)

Def. Dot product.
If α and β are vector-valued 1-forms [i.e. α : R2 → R3, then α · β(X,Y ) =
1
2 (α(X) · β(Y ) + α(Y )β(X)) where · is the dot product between two vectors.

Def. Differential.
The differential (derivative) of a surface x is a vectored-value “1-form”: x⃗ : U ⊆
R2 → R3. Say that U is parameterized by (u, v), then dx = xudu + dvdv [this
should look intimately familiar].

Def.[First Fundamental Form]
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Uz(t) R3

It

x⃗

x(z(t))
z

So x⃗ maps (w,z) to dx(w) and dx(z) respectively which span the tangent space
at point p [mapped from r in U → p in R3]. We will now show the first funda-
mental form corresponds to a composition of two vector-valued “1-forms”:

I(w, z) = dx(w) · dx(v)

=
1

2
[dx(w) · dx(z) + dx(z) · dx(w)]

=
1

2
[(dx · dx)(w, z)]

⇒ I = dx · dx = (xudu+ dvdv) · (xudu+ dvdv)

Where x⃗ is our surface, and dx⃗ is the “differential” of this surface (and a vector-

valued 1-form:

xudu
xvdv
dx

.

I = x⃗udu
2 + 2x⃗ux⃗vdudv + x⃗2dv2

= Edu2 + 2Fdudv +Gdv2 where...

E = x⃗u · x⃗u, F = x⃗u · x⃗v, G = x⃗v · x⃗v

= [dudv]

[
E,F
F,G

] [
du
dv

]
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6.2 Second Fundamental Form

The second fundamental form captures different “prototypical” information
about the surface; most notably, that which relates to quadratic terms in the
taylor series expansion about a point. We can reparameterize any smooth sur-
face so that at any point p, the first-order terms → 0 by aligning this point
with the origin so that the plane z=0 is tangent to the surface at the origin (i.e.
fx → 0, fy → 0).

The second fundamental form – like the first – is defined up to a sign:
Second fundamental form [caputes different features of the surface]. First
fundamnetal form describes surface up to the 0th order. Second fundamen-
tal form describes the surface up to the 1st order [captures higher derivative
information on the surface].

I = −dx⃗ · dn⃗
= −(x⃗udu+ x⃗vdv) · (n⃗udu+ n⃗vdv)

= −(x⃗u · vnudu
2 + (x⃗vn⃗u + x⃗un⃗v)dudv + x⃗v · n⃗vdv

2)

= −x⃗u · n⃗udu
2 − (x⃗vn⃗u + x⃗un⃗v)dudv − x⃗v · n⃗vdv

2)

Let e = −x⃗u · n⃗u and 2m = −(x⃗vn⃗u + x⃗un⃗v) and n = −x⃗v · n⃗v

=
[
du dv

] [ l m
m n

] [
du
dv

]
Where e = −x⃗u · x⃗u = x⃗u,u · n;
m = −x⃗v · n⃗u = −x⃗u · n⃗v = x⃗u,v · n⃗ where the x⃗u,u is the second derivative of x⃗;
and n = −x⃗v · n⃗v = x⃗vv · n⃗.

Note. x⃗v · n = 0. Can now take the derivative in the direction of u of both
sides:

vxuv · n⃗+ x⃗v · n⃗u = 0

Summary The value of the first fundamental form:

I(ax⃗u + bx⃗v, cx⃗u + dx⃗v) = (a, b)

[
E F
F G

] [
c
d

]
And the value of the second fundamental form:

I(ax⃗u + bx⃗v, cx⃗u + dx⃗v) = (a, b)

[
e m
m n

] [
c
d

]

6.3 Computing Length of a Curve

We will now see how the first fundamental form might help us compute the
length of a curve on a surface. Keep in mind that a curve on a surface is a
1-dimensional slice of that surface.
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Let x⃗ be a surface: x⃗ : U ⊆ R2 → R3 and z a parameterized 2D curve:
z : I → U ⊆ R2. Then the curve on the surface x⃗ is x⃗(z(t)).

Recall the velocity vector of the surface is the tangent vector: d
dt (x(z(t))) =

dx(z′(t)) = how x⃗ changes with respect to small changes in z(t) (i.e. z′(t)).

Theorem 6.1 The arclength of x⃗(z(t)) between t = a and t = b is given by∫ b

a

√
I(z′(t), z′(t)dt.

Proof:
Let γ(t) be a curve in R3. Take γ = x⃗(z(t)) (this special curve).
We’ve seen previously the arclength is the integral of the speed along the curve:

arclength =

∫ b

a

||γ(t)||dt

=

∫ b

a

|| d
dt

x⃗(z(t))||dt expanding the definition of |γ(t)|

=

∫ b

a

||dx⃗(z′(t))||dt

=

∫ b

a

√
dx⃗(z′(t)) · dx⃗(z′(t))dt

=

∫ b

a

√
I(z′(t), z′(t)dt

We now look at the relation between the acceleration of a curve and the second
fundamental form.
Let x⃗(z(t)) be a curve on a surface x⃗. Then:

Theorem 6.2 n⃗ · d2

dt2 (x⃗(z(t)) = I(z′(t), z′(t)).

29



More informally, the projection of the acceleration of the curve onto the unit
normal vector is equal to the second fundamental form. In short, the second
fundamental form is how the acceleration changes in the normal direction (i.e.
what component of the acceleration is in the normal direction). Proof:
The dot product between the tangent vector to the curve d

dt (x⃗(z(t))) and normal
vector to the curve n⃗ is 0:

0 =
d

dt
(x⃗(z(t))) · n⃗

differentiating both sides.. + chain rule → product rule.

=
d2

dt2
(x⃗(z(t) · n⃗+

d

dt
x⃗(z(t)) · d

dt
n⃗(z(t))

=
d2

dt2
x⃗(z(t)) · n⃗+ dx⃗(z′(t)) · dn⃗(z′(t))

dx⃗(z′(t)) · dn⃗(z′(t)) = 0 =
d2

dt2
x⃗(z(t)) · n⃗

= I(z′(t), z′(t))

Ex. [Sphere of Radius a]

Parametric Eqn: x⃗(θ, ϕ) =

sin θ cosϕsin θ sinϕ
cos θ

,
dx⃗ = x⃗θdθ + x⃗ϕdϕ = a

cos θ cosϕcos θ sinϕ
− sin θ

 dθ + a

− sin θ sinϕ
sin θ cosϕ

0

 dϕ

The first fundamental form:

I = dx⃗ · dx⃗
= a2(dθ2 + sin2 θdϕ2)

θ, ϕ are orthogonal coordinates from our spherical coord system (i.e. tangent
vectors are orthogonal):
x⃗θ · x⃗ϕ = 0

We now consider the second fundamental form in this context.
Note: The unit normal is simply the rescaled gradient of x⃗: n⃗ = 1

a x⃗. Then
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I = −dx⃗dn⃗

= −dx⃗(
1

a
dx⃗)

=
−1

a
dx⃗ · dx⃗

=
−1

a
· I

= −a(dθ2 + sin2θdϕ2)

Ex. [Surface of Revolution]

Let vector-valued 1-form: x⃗ =

f(u) cosϕf(u) sinϕ
u


dx⃗ = x⃗udu+ x⃗ϕdϕ =

f ′(u) cosϕ
f ′(u) sinϕ

1

 du+

−f(u) sinϕ
f(u) cosϕ

0

 dϕ.

The first fundamental form is then given by:
I = dx⃗ · dx⃗ = (f ′2(u) + 1)du2 + f2(u)dϕ2

Note: It’s significantly more difficult to compute n⃗: no longer in the same

31



direction as the gradient (as it is on a sphere..):

n⃗ =
x⃗uxx⃗v

||x⃗uxx⃗u||

=
1√

f ′(u)2 + 1

− cosϕ
− sinϕ
f ′(u)


Note:

− cosϕ
− sinϕ
f ′(u)

 is a normal vector ⊥ x⃗u, x⃗u

From this n⃗, we can compute the differential:

dn⃗ = n⃗udu+ n⃗ϕdϕ = 1√
f ′(u)2+1

(

 0
0

f ′′(u)

 du+

[
sinϕ

− cosϕ0

]
dϕ)

Now we can finally compute the Second Fundamental Form:

I = −dx⃗ · dn⃗

I =
1√

f ′2(u) + 1
(−f ′′(u)du2 + f(u)dϕ)

6.4 Principle Curvature

I, I are symmetrix and bilinear.

First condition: I = I Using symmetric matrix theory of linear algebra,
we can find two basis vectors e1, e2 ∈ R2 such that the first fundamental form
under these two vectors is the identity matrix:
I(e1, e1) = 1, I(e2, e2) = 1, I(e1, e2) = I(e2, e1) = 0.
Equivalently stated, I under the basis [e1, e2] is the identity matrix.

Second condition: I(e1, e2) = 0. Equivalently stated, the matrix I under

the basis [e1, e2] is

[
k1, 0
0, k2

]
.

Where k1 = I(e1, e1), k2 = I(e2, e2).

The values [k1, k2] are called the principle curvatures of the surface.

As we can always diagonalize a symmetric matrix, we can find such an [e1, e2]
so that condition 1 and condition 2 are satisfied.

Note: If k1 = k2 at a point p on the surface, then p is called the umbilic
point. The sphere is the only known surface where all the points on the surface
are umbilic points.
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7 October 18

7.1 Umbilic point

Theorem 7.1 Suppose x⃗ : U ⊆ R2 → R3 is covered by umbilic points. Then x⃗
must be part of a sphere or plane.

Umbilic points: I = k ∗ I: where k is some function: might be different at
different points.
Let the surface be parameterized by (u,v), and n⃗ is the normal vector.
n⃗v = −kx⃗v and n⃗u = −kx⃗u.
So n⃗vu = −kux⃗v − kx⃗uv [differentiating w.r.t. u]
and n⃗uv = −kvx⃗u − kx⃗uv ⇒ kux⃗v = kvx⃗u and x⃗u, x⃗v are basis vectors of the
tangent space. So this can only occur when ku = 0 = kv ⇒ k is a constant.
Case 1: k = 0, so n⃗u = n⃗v = 0. Therefore, dn⃗ = 0 → x⃗ is part of a sphere [or a
plane]. Case 2: k ̸= 0 [but it must equal a constant]. To show x⃗ is a sphere, we
must have c = x⃗+ 1

k n⃗. Therefore, taking the partial w.r.t. u: cu = x⃗u+
1
k n⃗u = 0

and taking the partial w.r.t. v: cv = x⃗v +
1
k n⃗v = 0. So c is a constant vector:

⇒ c is a constant vector:
|x⃗− c| = | 1k n⃗| =

1
|k| .

⇒ x⃗ is part of a sphere (centered at C or radius 1
|k| .

7.2 Shape Operator

Shape operator: S = operator of the second fundamental form [defines a sym-
metric linear transformation].
S : Tpx⃗ → Tpx⃗. and w → −Dwn⃗ [take the directional derivative of the unit
normal in the direction of w: variation of the unit normal in the direction of w].
WTS: S is symmetric:
< Sw, z >=< w,Sz > for w, z ∈ TP x⃗.

S has two eigenvalues because it’s symmetric: k1, k2 which relates to the prin-
ciple curvature we defined last time.

with orthonormal eigenvectors x1, x2 [called principle directions].

Associate a bilinear form to S:
w, z ∈ Tpx⃗ →< Sw, z >, then

I = −
[

n⃗u · x⃗u n⃗u · x⃗v

−vnv · x⃗u n⃗v · x⃗v

]
(under basis x⃗u, x⃗v).

I = −
[
< S(x⃗u), x⃗u > < S(x⃗u), x⃗v >
< S(x⃗v), x⃗u > < S(x⃗v), x⃗v >

]
Where < S(x⃗u), x⃗u >=< −n⃗u, x⃗u >= −n⃗u · x⃗u.

How to compute k1, k2 from I?
Step 1 Solve det(I− λI) = 0 ⇒ λ = k1, k2. k1, k2 are the principle curvatures.
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Recall I =

[
x⃗ux⃗u x⃗ux⃗v

x⃗vx⃗u x⃗vx⃗v

]
.

Step 2 Solve (I − λI) · X = 0 ⇒ X1, X2. X1, X2 are the principle direc-
tions.

Often k1, k2 are very difficult to compute, so instead we might compute the:
Gauss Curvature: k = k1k2.
Mean Curvature: H = k1+k2

2 .

Special case: if we have a curvature coordinate (u,v): both I and I are
diagonal under the basis x⃗u, x⃗v. Then x⃗u, x⃗v are the principle directions and
orthogonal to each other [Symmetric matrix: two eigenvectors are orthogonal].
In this special case...

I =

[
a 0
0 b

]
, I =

[
α 0
0 β

]
.

Goal:

Find out k1, k2: det(I− λI) = det(

[
α− λa 0

0 β − λb

]
)

= (α− λa)(β −−λb)
λ = α

a ,
β
b

So x1 = x⃗u, x2 = x⃗v

So x⃗u and x⃗v are k1, k2.

Ex. Sphere of radius a: I = a2
[
1 0
0 sin2 u

]
I = −1

a I = −a2

[
1 0
0 sin2 u

]
.

Since the matrix is symmetric, we can use the special case: k1 = −1
a , k2 = −1

a ,
and we see k1 = k2 ⇒ umbilic points.

Expanding on the computations... n⃗ = 1
a x⃗ [centered at 0]

dn⃗ = 1
adx⃗

I = −dn⃗ · dx⃗ = −1
a dx⃗ · dx⃗ = −1

a I [dx⃗dx⃗ is the first fundamental form.]

⇒ I =
[
−n⃗u · x⃗u −

− −

]
Ex. Surface of Revolution

x = f(z) and rotate around the z-axis.

f(u) cos vf(u) sin v
u

, f(u) > 0.

x⃗u =

f ′(u) cos v
f ′(u) sin v

1

.
x⃗v =

−f(u) sin v
f(u) cos v

0

.
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n⃗ = 1√
1+(f ′(u))2

− cos v
− sin v
f ′(u)

.
Can compute I, I [and both are diagonal matrices], we can compute k1, k2 with

ease: k1 = −f ′′(u)
(1+(f ′(u))2)3/2

, k2 = β
b = 1

f(u)(1+f ′(u)2)1/2
with X1 = x⃗u and X2 = x⃗v.

Recall a planar curve, x = f(z), we can compute the curvature of z, and the
curvature of this curve is exactly equal to k1 (or using u as a parameterization):[

u
f(u)

]
.

Ex. Graph of a function [also defines a surface]
Graph: z = f(x,y)

Surface x⃗ =

 u
v

f(u, v)


x⃗u =

 1
0
fu

, x⃗v =

 0
1
fv

, n⃗ = 1√
1+f2

u+f2
v

−fu
−fv
1


xuxu = 1 + f2

u

xuxv = fufv
xvxv = 1 + f2

v

I =

[
1 + f2

u fufv
fufv 1 + f2

v

]
I = 1√

1+f2
u+f2

v

[
fuu fuv
fuv fvv

]
Goal We want to simplify I, I by choosing different coordinates.
Claim: We can assume fu = fv = 0 and fuv = 0.
Can accomplish fu = fv = 0 via a rigid motion transformation.

Theorem 7.2 For any surface x⃗, we can choose (u,v) [which are coordinates]

such that x⃗(u, v) is a graph =

 u
v

f(u, v)

 and

{
fu = fv = 0

fuv = 0
at u = 0, v= 0.

So under the special coordinates:

I =

[
1 0
0 1

]
I =

[
fuu 0
0 fvv

]
⇒ k1 = fuu, x1 = x⃗u =

[
1
0

]
⇒ k2 = fvv, x2 = x⃗v =

[
0
1

]
Taylor expansion of f(u, v) = f(0, 0) + fu(0, 0)u + fv(0, 0)v + 1

2fuu(0, 0)u
2 +
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fuv(0, 0)uv +
1
2fvv(0, 0)v

2 + ... is the expansion at 0.

Then the first order and fuv zero out so f(u, v) = frac12k1u
2+frac12k2v

2+ ...

Very nice expression of the function that reviews the relationship between the
surface and principle curvatures. The surface is given by f(u,v), but the surface
is locally determined by k1, k2, so we know what the surface looks like at small
neighborhoods around that point. Taylor series expansion only legit when
u and v are small ⇒ holds true for local geometry. Conclusion: The
principle curvature k1, k2 “determine” the surface in a small neighborhood of p.

If we have a point, we can find a parameterization such that we move it to
the origin, and then we have how the function looks like locally.

For a planar curve, can always realize a curve as a graph of a function:

y = f(x) →
[

u
f(u)

]
where f(u) = 1

2ku
2 + higherorderterms where k is the

curvature at 0.
Next time: normal curvature.

7.3 Mean and Gauss Curvature

7.4 Normal Curvature, Euler Theorem

8 October 20

8.1 Local Surfaces

For any surface x⃗, we can locally parameterize it by a graph [as long as it is
smooth]:

x⃗(u, v) =

 u
v

f(u, v)


Taylor expansion [0 and first order terms vanish b/c we choose fn. to reside at
origin] = 1

2k1u
2 + 1

2k2v
2 + higher order terms.

fuu = k1, fvv = k2, fuv = 0.
The geometry around a base point is determined by these two curvatures (k1, k2).
True in a neighborhood around (0,0) [taylor expansion].
Case 1 We say p is elliptic if k1k2 > 0. [Gauss Curvature is positive].
Case 2: We say p is hyperbolic if k1K2 < 0 (Gauss Curvature is negative].
e.g. k1 = 1, k2 = −1 f(u, v) = 1

2u
2 − 1

2v
2. Hyperbolic paraboloid [saddle point

at (0,0)]. Case 3: We say p is a parabolic point if k1k2 = 0 but k1 + k2 ̸= 0
[equivalently Gauss Curvature = 0, but mean curvature ̸= 0]. Exactly one of
k1, k2 = 0, but not at the same time.
e.g. k1 = 1, k2 = 0, f(u, v) = 1

2u
2. Therefore, every surface must locally look

like one of these three models.
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8.2 Normal Curvature

Given a unit vector v ∈ Tpx⃗ [tangent space of the surface x⃗]. Consider the nor-
mal slice of x⃗ given by span(n⃗, v) ∩x⃗. Plane spanned by the normal vector and
the tangent plane produces a curve (γ(s)) passing through p, then γ′(0) = p,
γ′(0) = v.

So using the notations from the curve’s section, [in particular, planar curves]:
T = v at p, T ′ = kN where k is the curvature at p. Since we have that N lies
in the plane spanned by span(n⃗, v), and N ⊥ T , N = ±n⃗.

±k = T ′ · n⃗ [take dot product on both with n⃗ goes to n⃗ · n⃗ = ±1 b/c unit
vector.]
±k = T ′ ·′ vn = −T · n⃗vtake derivate w.r.t. v and T · n⃗ = 0 = v · −Dvn⃗ =
S(v) · v =< S(v), v > S is the shape operator = I(v, v). where k is the normal
curvature in the direction of v [up to a sign].

S(v) · v =< S(v), v >. Can compute the shape operator of a tangent vec-
tor. Geometric meaning is the normal slice’s curvature: the intersection of the
normal plane with the surface.
However, this varies based on the tangent vectors chosen. So
Ex. Choose v = X1, X2 (principal directions), then the normal curvature is
k1, k2.
S(X1) = k1X1 [X1 is the eigenvector].
< S(X1), X1 >= k1 < X1, X1 >= k1 [X is an orthonormal eigenvector].

8.3 Euler Formula

What is the relation of a general normal curvature to the two principle curva-
tures. This is given by Euler’s formula.
v = cos θX1+sin θX2 [X1, X2 are the orthonormal basis, and v is a unit vector,
so it can be written as a linear combination of sin and cos the orthonormal
basis].
< S(v), v >=< S(cos θ ·X1 + sin θX2), cosθX1 + sin θX2 >
= < cos θ · k1X1 + sin θk2X2, cos θX1 + sin θX2 >
= < k1 · cos2θ + k2 sin

2 θ >⇒ normal curvature always lies between k1 and k2.
Normal curvature is always between k1 and k2.

If k1k2 < 0 (hyperbolic point), then can find v = cos θX1 + sin θX2 so that
< S(v), v >= 0.
Call this v to be the asympotic direction [direction in which the normal curva-
ture vanishes].
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Ex. Choose x⃗ =

 u
v

1
2u

2 − v2

 is a surface parameterized by a graph, k1 = 1,

k2 = −1

x1 =

[
1
0

]
= x⃗u, x2 =

[
0
1

]
= x⃗v. Then Choose θ = π

4 → v =
√
2
2 x1 +

√
2
2 x2

Then k1cos
2θ+k2 sin

2 θ = 1 ∗ (cos(π4 )
2)− 1 ∗ sin(π4 )

2 = 0. Asymptotic direction
is θ = π

4 . y = x is the asymptotic lines. [may be ± for both theta and the line]

Ex. Sphere: elliptic points.
k1 = k2 ̸= 0

Ex. Cylinder: parabolic points. Two
As you change the vector from x2 → x1, the normal vector will become an
ellipse.

Ex. Torus in R3

8.4 Exterior Calculus

Recall 1-form α at a point p ∈ Rn, α : TpRn → R,
α = α1dx1 + ... + αndxn [written in terms of the basis dxi: dual basis of basis
in the tangent space in the tangent space: { ∂

∂xi
}ni=1 such that dxi = ∂

∂xj
= δij .

Differential 2-form dxi ∨ dxj that satisfies the following rules:

• dxi ∨ dxj = −dxj ∨ dxi [anti-symmetric]

• dxi ∨ dxi = 0

A general 2-form is
∑

i<j αijdxi ∨ dxj

Ex. n = 2, Rn = R2

dx1 ∨ dx2 is a 2-form.
(x1x2) ∗ dx1 ∨ dx2 [coefficients change based on x1, x2] is a 2-form. f(x1, x2) ·
dx1 ∨ dx2 is the only 2-form in R2. Basis are dx1, dx2 are the basis for the 1-
form can be used to form the basis for the two forms: dx1 ∨ dx2, dx1 ∨ dx2dx2 ∨
dx1, dx2 ∨ dx2 = 0,−1 ∗ theother,−1 ∗ theother, 0, so we can write the basis in
the form dx1 ∨ dx2.
When n = 3, a 2-form is:
α = α12dx1∨dx2+α13dx1∨dx3+α23dx2∨dx3, and dx1∨dx2, dx2∨dx3, dx1∨dx3

are the basis of the space of 2-forms.
2-form is a bilinear function, α : TpRnxTpRn → R, so (w, z) → α(w, z). More
generally, we can define k-forms as linear function on TpRn on the tangent space,
α : TpRnx...xTpRn → R [cross product of k many tangent spaces].
(w1, ..., wk) → α(w1, ..., wk).
Bilinear functions must be anti-symmetric [skew symmetric – interchanging any
two vectors changes the sign]: α(w, z) = −α(z, w). α(w1, ..., wi, ...wj , ...wk) =
−α(w1, ..., wj , ..., wi, ...wk) where we interchange i and j (i ̸= j), then the sign
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changes.

Ex. dx1 ∨ dx2(

[
a
b

]
,

[
c
d

]
)

Ex dx ∨ xy ∨ dz(v1, v2, v3) ∈ R3

v1 =

v11v12
v13


v2 =

v21v22
v23

 v3 =

v31v32
v33

 =det(

v11 v21 v31
v12 v22 v23
v13 v23 v33


Geometric meaning: volume of the polygon spanned by v1, v2, v3

Exterior Derivative ∨kRn = {all k-forms in Rn}
d : ∨kRn → ∨k+1Rn

In particular when k = 0, ∨0Rn = {functions on Rn}
d : ∨0Rn → ∨1R

If we have a k − form, α = adx.
i1..

dxik where a is a function in ∨0Rn, then

9 October 20 (TA Review)

9.1 Bilinear Form

Let V be a vector space over R. A bilinear form on V is a bilinear function: f:

V XV → R where V = Rn and ϕ(u, v) =
n∑

i=1

uivi.

Ex.
V = Rn, A ∈ Rnxn, ϕ(u, v) = uTAv =

∑n
i,j=1 uiAijvj

Def [Symmetric Bilinear Form]: A symmetric blilinear form ϕ which satisfies
ϕ(x, y) = ϕ(y, x) ∀x, y.

Ex. ⟨· , ·⟩ is symmetric.

Proposition 9.0.1 Every bilinear form on Rn is symmetric.

Proof: Let ϕ be a bilinear form. LetAij = ϕ(ei, ej). Then ϕ(u, v) = ϕ(
∑

viei,
∑

vjej) =

∑
i,v ϕ(ei, ej)vivj where ϕ(ei, ej) = Ai,j where ek =


0
...
1
0
...


Proposition 9.0.2 Let V be a n-dimensional vector space over the field R with
basis [v1, .., vn]. Let ϕ be a bilinear form on V and let A be the matrix of ϕ with
respect to {vi}. Then ϕ symmetric ⇐⇒ A is symmetric.
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Proof: Suppose ϕ is symmetric. Then Aij = ϕ(vi, vj) = ϕ(vj , vi) = Aji.
Suppose A is symmetric. Then ϕ(x, y) = xTAy = (xTAy)T = (yTATx) =
yTAx = ϕ(y, x).
Note: this uses the following property of matrices: (AB)T = BTAT .

Def: ϕ is non-degenerate if ∀x ∈ V , if ∀y ∈ V , ϕ(x, y) = 0, then x = 0.

Proposition 9.0.3 ϕ is non-degenerate ⇐⇒ A is non singular ⇐⇒ det(A)
̸= 0 ⇐⇒ A is invertible.

Def ϕ is an inner product ⇐⇒ ϕ is nondegenerate and symmetric.
Ex. The dot product.
Ex. A symmetric, A non singular, ⟨· , ·⟩xy = xTAy.

Proposition 9.0.4 I is an inner product on TpX.

Let vs, vt be the basis of the space spanned by TpX. Then A =

[
vs ∗ vs vsvt
vsvt vtvt

]
is representative of I up the the basis vs, vt.

9.2 k-forms

Given a k-form α and an l-form β, α ∨ β is a (k+l)-form.

Let α, β be 1-forms. i.e. Tp → R where the transformation from the tan-
gent space is linear.
Then α ∨ β : TpxTp → R where the transformation is again, linear.

(α ∨ β)(x, y) = 1
2 [α(x)β(y)− β(x)α(y)

Def. A bilinear form on a vector space V over R is a function ϕ : V xV → R
such that it is linear in each argument:
ϕ(ax1 + bx2, y) = aϕ(x1, y) + bϕ(x2, y).

Def. A bilinear form is alternating (or antisymmetric) if ∀x, y ϕ(x, y) = −ϕ(x, y).
Ex. ϕ is alternating, then ϕ(x, x) = 0.
Def. A 2-form of V is an alternating bilinear form [unlike the inner product
which is a symmetric linear form]: xTAy where switching the order of x and y
will yield the opposite result. This is because A = −AT .

Proposition 9.0.5 Choose a basis [v1, v2, ...vn] for V. Then every 2-form is of
the form: (x, y) → xTAy where is is an antisymmetric nxn matrix (AT+A = 0).
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10 October 25

• moving frame of a map

• moving frame of a surface.

• moving frame of a surface.

Def.[Exterior Derivative]:
d : {k − forms} → {(k + 1)− forms}.
d(α(x1, ..., xn)dxi ∨ ... ∨ dxik) = dα ∨ dxi ∨ ... ∨ dxik : linear combination of the
basis vectors dxik where α are the coefficients in front of the basis vectors.

Theorem 10.1 d2 = 0

Proof: Only for 0-forms
{0− formsinRn} = {smoothfunctionsinRn}
⇒ d2f = 0

f = f(x1, ..., xn)

df =

n∑
i=1

∂f

∂xi
dxi

Def.[Moving Frame]

x⃗ : U ⊆ Rm → R3, x⃗(u1, ..., um) =

x1(u1, ..., um)
x2(u1, ..., um)
x3(u1, ..., um)


A moving frame of x⃗ is a tripe of vectors: ei : U → R3, {e1, e2, e3} which is an
[arbitrary] orthonormal basis (oriented) of R3 at each point.

Ex. x⃗ : U ⊆ R3 → R3 that maps (γ, ϕ, z) →

rcosϕ
r sinϕ

z

 where

 γ > 0
ϕ ∈ [0, 2π)

z ∈ R


[notice these are cylindrical polar coordinates].

Choose the following moving frame: ϵ1 =

cosϕsinϕ
0

 = x⃗r,

ϵ2 =

− sinϕ
cosϕ
0

 = γ−1 ∗ x⃗ϕ

ϵ3 =

00
1

 = x⃗z
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Def. Exterior derivative of a map x⃗.

x⃗ =

x1(u1, ..., um)
x2(u1, ..., um)
x3(u1, ...um)

, dx⃗ =

dx1

dx2

dx3

 =


n∑

i=1

∂xi

∂ui
dui

n∑
i=1

∂x2

∂ui
dui

n∑
i=1

∂x3

∂ui
dui

 =
n∑

i=1

∂x1

∂ui
∂x2

∂ui
∂x3

∂ui

 ∗ dui =

n∑
i=1

x⃗ui
∗ dui

dx⃗ is a 3-vector valued 1-form.

Ex. Find out dx⃗whenx⃗ is the polar cylindrical coordinate map: dx⃗ = x⃗rdr +

x⃗ϕdϕ+ x⃗zdz) =

cosϕsinϕ
0

 dr +

−r sinϕ
r cosϕ

0

 dϕ+

00
1

 dz.

Also called the differential derivative of x.

Def θk = dx⃗ek where {ek}3k=1 is a moving frame of x⃗.
Want to study how the map x⃗ changes:

• How x⃗ changes along the moving frame

• How the moving frame changes along itself.

θk (scalar-valued) 1-form: captures (1).

Ex. In the polar coordinate map: dx⃗ = x⃗rdr + x⃗ϕdϕ + x⃗zdz, θ1 = dx⃗ · e1 =
dx⃗ · x⃗r = x⃗rx⃗rdr = dr
θ2 = dx⃗ · e2 = dx⃗ · r−1x⃗ϕ = x⃗ϕr

−1x⃗ϕdϕ = rdϕ
θ3 = dx⃗ · e3 = dx⃗ · x⃗z = x⃗zx⃗zdz = dz
Therefore, dx⃗ =

∑3
k=1 θkek = θ1e1 + θ2ϵ2 + θ3ϵ3 [dx⃗ is a 3-vector-valued 1-form

and we represent it with the coordinates that are the scalar-valued 1-forms θi
with a different orthonormal basis dr becomes de1].

This answers our first question; how x⃗ changes along our moving frame.
dx⃗ = Eθ where E is a 3x3 matrix of the orthonormal basis vectors:

[
e1 e2 e3

]
.

To study how a smooth map changes, we looked at its differential. Similarly to
study how the moving frame changes, we will again examine its differential.

Def wjk = ejdek = dekej where (wjk are coordinates of dek under the moving
frame).
Want to represent a vector in R3 in the basis spanned by {e1, e2, e3}. Example:

v ∈ R3, vj = v · ej and v =
∑3

j=1 vj · ej ⇒ converting vectors from basis ei to

R3.
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dek =
∑3

j=1 wjkek
Lemma wjk = −wkj

W := (wjk) matrix is skew-symmetric.
Proof: wjk = ejdek = −dej · ek = −wkj .

W =

 0 w12 w13

−w12 0 w23

−w13 −w23 0


Theorem 10.2 dE = E ·W

d(e1, e2, e2) = (de1, de2, de3) = (e1, e2, e3)W

Proof: Just plug in dek =
∑3

j=1 wjkej and use lemma W is a skew-symmetric
matrix.
This answers how the moving frame changes along itself.

Ex. x⃗(t) be a curve in R3, arclength parameterization with curvature κ(t),
torsion τ(t).

Choose the moving frame to be (T, N, B) = (e1, e2, e3).
dx⃗ = x⃗′(t)dt = T · dt
⇒ θ1 = dx⃗ · T = T · Tdt = dt
θ2 = 0 = θ3
θ2 = dx⃗ ·N = T · dt ·N = 0 θ3 = dx⃗ ·B = 0

(1) dx⃗ = E · θ ⇐⇒ T · dt = (T,N,B)

dt0
0

 How the curve changes along the

moving the frame.
How the curve changes along the moving frame. The changes of x is decided
by the changes in the tangent vector. (2): study changes in the moving frame
along itself: dE = E ·W ⇐⇒ the frenet equation.

W =

 0 −κdt 0
κdt 0 −τdt
0 τdt 0


w12 = e1 · de2 = T · dN = T · N ′(t)dt = −κdt Together, they give us a full
picture of the curve.

Theorem 10.3 (first structure equation) dθ + w ∨ θ = 0 [W is our skew-
symmetric matrix and θ = [θ1, θ2, θ3]]

equivalent to d

θ1θ2
θ3

+W ∨

θ1θ2
θ3

 = 0

⇐⇒


dθ1 + w12 ∨ θ2 + w13 ∨ θ3 = 0

dθ2 − w12 ∨ θ1 + w23 ∨ θ3 = 0

dθ3 − w13 ∨ θ1 − w23 ∨ θ2 = 0
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Proof:
dx⃗ = E · θ
0 = d2x⃗ = d(E · θ) = [ruleofexteriorderivative] = dE ∨ θ+Edθ. Using d2 = 0.
= EW ∨ θ + Edθ = E(W ∨ θ + dθ) [E is invertible]
Therefore 0 = W ∨ θ + dθ Recall: d(f(x1, .., xn)dx1 ∨ dx2) = df ∨ dx1 ∨ dx2 +
f(d(dx1 ∨ dx2)) where the second term is 0 (dx1 ∨ dx2).
More generally, d(f ∨ θ) = df ∨ θ + fdθ.

Theorem 10.4 (Second Structure Equation) dw + w ∨ w = 0

W is again our skew symmetric matrix. Every coordinate is a 1-form. Scalar
product is replaced by wedge product (effectively multiplying 1-forms). Proof:
dE = EW
0 = d(dE) = d(EW ) [=0 on LHS because d2 = 0]
0 = dE ∨W + EdW [special case E is a 0-form]
d(α ∨ β) = dα ∨ β + (−1)kα ∨ dβ [general formula: if α is a k-form].

= EW ∨W + EdW
= E(W ∨W + dW ) [Multiply by E−1 on both sides]
0 = W ∨W + dW

Theorem 10.5 U ⊆ Rm be simply connected [any loop can shrink to a point
in that domain].

Given W satisfying the second structure equation dW + W ∨ W = 0, then
WT = −W and given {e1, e2, e3} at P ∈ U , then ∃ a unique {e1, e2, e3} that
extends {e1, e2, e3} at p so that dE = EW . If W satisfies the second structure
equation, then dE = EW is always solvable.

If given θ =

θ1θ2
θ3

 and dθ + W ∨ θ = 0, and specify x⃗(p then ∃ a unique x⃗

satisfying dx⃗ = E · θ [you can go backwards].

11 November 1st

Midterm: material up through adaptive frames.

11.1 Curvature and Isometry

Isometry: when two surfaces are identical or not.
Def. Global Isometry:
x⃗ : U → R3 and y⃗ : Ũ → R3 are globally isometric if there exists an isometry θ
of R3 so that y⃗ = θ ◦ x⃗
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θ : x → Ax+ b where A is an orthogonal matrix and b is some constant vector.
y⃗ = Ax⃗+ b: if we can find the matrix A and the column vector b, then they are
isometric.

Theorem 11.1 If two surfaces are globaly isometric, they have equal first and
second fundamental form. If y⃗ = θx⃗ for some isometry θ of R3, then I y⃗ = Ix⃗
and Iy⃗ = Ix⃗

Proof y⃗ = Ax⃗+ b
dy⃗ = Adx⃗
I y⃗ = dy⃗ · dy⃗ = dy⃗T · dy⃗ = dx⃗TATAdx⃗ = dx⃗T dx⃗ = Ix⃗ using ATA = I.
n⃗y = A · n⃗x. Similarly Iy⃗ = Ix⃗ (where I = −dn⃗ · dx⃗).
θ is direction if det(A) = 1 [orientation preserving]. θ is indirect if det(A) = −1.
Assuming A is a matrix of constants.

Every isometry of R3 is called rigid motion.

Question: Can we use only the I to compute κ (the gauss curvature)?
Last class: Step 1: find an adaptive frame e1, e2 [e3 is the normal vector of the
surface].
Step 2: Compute dx⃗ = e1θ1 + e2θ2 to find out θ1 and θ2.
Step 3: Compute w12 = e1de2 = −e2de1
Step 4: Use Gauss equation to compute dw12 = kθ1 ∧ θ2.

Today: (1): Find I = dx⃗ · dx⃗
(2): Write I = θ21 + θ22 (by inspection). [in some cases, this is easier to do].
Write first fundamental form as a score sum for some 1-forms θ1, θ2
(3): Solve the first structure equation: dθ1 = w12 ∧ θ2 to find w12

dθ2 = w12 ∧ θ1.
(4) Use the Gauss Equation dw12 = kθ1 ∧ θ2 to find κ.

Justification:
Goal: find adaptive frame e1, e2 such that θ1, θ2 are the 1-forms in this de-
composition: dx⃗ = e1θ1 + e2θ2.

First, θ1, θ2 are linearly independent:
Suppose not. Then WLOG θ1 = aθ2: Space of 1-forms are 2-dimension space.
I = θ21 + θ22 = (1 + a2)θ22. Can find v ∈ TpU such that v ̸= 0 and θ2(v) = 0 [θ2
is a linear function and therefore must have a non-trivial kernel mapping to 0],
I(v, v) = (1+ a2)θ22(v) = 0 which is a contradiction since I is a non-degenerate
2-form [equality of I only achieved when v = 0].

This implies θ1 and θ2 form a basis of 1-form space: T ∗
pU .

So let u1, u2 ∈ TpU that are dual basis of θ1, θ2 (this means θi(uj)− δij).
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e1 = dx⃗(u1) ∈ Tx⃗(p)x⃗
e2 = dx⃗(u2) ∈ Tx⃗(p)x⃗ So we can check dx⃗ = e1θ1 + e2θ2 and e1, e2 are orthonor-
mal.

Can now find w12 = e1de2 implicitly using the structure equations.

Ex. Surface of revolution:

x⃗ =

f(u) cosϕf(u) sinϕ
u

.
(1) x⃗u =

f ′(u) cosϕ
f ′(u) sinϕ

1

 x⃗v =

−f(u) sinϕ
f(u) cosϕ

0

.
I = (1 + f ′(u)2)du2 + f2(u)dϕ2

I = θ21 + θ22
So θ1 =

√
1 + f ′(u)2du

and θ2 = f(u)dϕ
(3) Solve for w12 using the two structure equations:
dθ1 = −w12 ∧ θ2
dθ1 = d(

√
1 + f(u)2du) = 0

0 ⇒ −w12 ∧ θ2 = 0 [w12 = aθ1 + bθ2] w12 can be represented as a linear combi-
nation fo the basis θ1 and θ2. Therefore, a = 0 so w12 = bθ2 because otherwise
aθ1 ∧ θ2 will be non-zero.

dθ2 = w12 ∧ θ1
dθ2 = d(f(u)dϕ) = f ′(u)du ∧ dϕ
w12 ∧ θ1 = w12 ∧ (

√
1 + f ′(u)2du) ⇒ w12 = something ∗ dϕ

something = −f ′(u)√
1+f ′(u)2

⇒ w12 = − f ′(u)√
1+f ′(u)2

dϕ

(4) dw12 = − f ′′(u)√
1+f ′(u)2

du ∧ dϕ.

dw12 = κθ1 ∧ θ2
dw12 = − f ′′(u)

f(u)(1+(f ′(u)2))3 θ1 ∧ θ2

⇒ κ = − f ′′(u)
f(u)(1+(f ′(u)2))3

Ex

x⃗ =

x2

y
y2


vxv =

2x0
0


x⃗y =

 0
1
2y

 I = 4x2dx2 + (1 + 4y2)dy2

θ1 = 2xdx, θ2 =
√
1 + 4y2dy
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dθ1 = 0 = dθ2{
0 = −w12 ∧ θ1 ⇒ w12 = aθ1

0 = −w12 ∧ θ2 ⇒ w12 = bθ2
⇒ a = b = 0 and w12 = 0 ⇒ κ = 0.

11.2 Gauss’ Theorem Egregium

Gauss curvature is something intrinsic: only need first fundamental form. In-
trinsic: Objects that are only related to I.
Extrinsic: Objects that are also related to I.
Gauss curvature is intrinsic.

Theorem 11.2 (Gauss’s Theorem Egregium) Two surfaces that are locally
isometric (Ix⃗ = Iy⃗ everywhere in definition domain U), then x⃗, y⃗ have the same
Gauss curvature κ.

Proof:
By the computation process of κ by using only Ix⃗(= Iy⃗ [when first fundamental
forms are equal, can carry out the previous procedure to find κ where they will
be equal because the first fundamental form are equal).

Theorem 11.3 Two flat surfaces [means that κ = 0]are locally isometric.

For two surfaces x⃗ and y⃗ if κx⃗ = κy⃗ = 0, then we deduce the two surfaces are
locally isometric (kind of the opposite direction of Gauss’s Theorem Egregium).
Ex.

x⃗ =

z cosϕz sinϕ
z

 [surface of revolution of a line z = a cone].

Want to compute it’s Gauss curvature κ of the cone:

Recall for a revolutionary surface: κ = f ′′(z)
f(z)(1+f ′(z)2)3 = 0 f(z) = z and

f ′′(z) = 0.
Therefore Gauss curvature is 0, so the cone is locally isometric to the plane.
Can be “unwrapped” to the plane in R2.
Question: Are these 3 surfaces [flat cylinder, flat cone, and plane in R2]
globally isometric?
Of course not: I is different in each [but not ideal since I and I change based
on parameterization of surface]. Instead look at principle curvatures since they
are invariant to varying parameterizations.

Want to compute k1, k2 to show this.

(1) k1 = k2 = 0 [R2 is umbilic and 0].
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(2) if radius = 1 k1 = 0 [curvature along the cylinder and k2 = 1 [curvature
around the circle cross-section of the cylinder].
(3) Cone angle is 45 degrees: k1 = 0 [vertically along the outside of the cone],
k2 =

Recall, we computed the curvatures for a revolutionary surface: k1 = f ′′(u)
(1+f ′(u)2)3/2

=

0[forcone] and k2 = 1
f(u)(1+f ′(u)2)1/2

= 1
z(1+1)1/2

So the curvatures are clearly different [independent of parameterization] ⇒ not
globally isometric.

Ex. Tangent Developable [surface using a spatial curve]
Show Gauss Curvautre of Tangent Developable κ = 0
Use the procedure we did today (adaptive frame): or score sum directly, Try
this out yourself.

12 November 10

Sections 6.1 and 6.2 of donaldson.

12.1 Geodesic in R3

Theorem 12.1 The shortest path between two points is a straight line under
the Euclidean Metric.

Proof: Assume curve x⃗ is the shortest path x⃗(t) for t ∈ [a, b]. A variation
of x⃗ : x⃗ϵ(t) = x⃗(t) + ϵ ∗ y⃗(t) where y⃗(t) is a vector field along x⃗(t), and
y⃗(a) = y⃗(b) = 0.

The shortest path implies x⃗(t) is a stationary curve Lϵ = Length(x⃗ϵ(t).
0 = d

dϵ ϵ=0
L(ϵ) where ϵ is a critical point of L.

So
∫ b

a
x⃗ · y⃗dt = 0 Since y⃗ is arbitrary, it follows that x⃗′′ = 0 everywehre ⇒

x⃗ is a straight line.

12.2 Geodesic in Surface

Generalize Stationary Curve from Euclidean space to curved surfaces.
Geodesic is a curve which has stationary length.
This means for any variation x⃗ϵ(t) = x⃗(t) + ϵy⃗(t) where y⃗(t) ⊥ n⃗ [stays in the
tangent plane to the surface], then d

dϵ |ϵ = 0length(x⃗ϵ(t)) = 0 [condition for this
curve to be a geodesic: change in the length of the curve with respect to ϵ at 0
is 0].

Theorem 12.2 A geodesic x⃗ satisfies d2

dt2 x⃗(z(t)) is normal to the surface [does
not have any tangential component].
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Generalization of stationary curve from euclidean space to a surface: second
derivative is not 0 everywhere but instead does not have any component in the
normal direction.
Proof: Assume x⃗(z(t) has arclength. Then 0 = d

dϵ |ϵ=0length(x⃗ϵ(t)) =
d
dϵ |ϵ=0

∫ b

a
|x⃗ϵ(t)|

Theorem 12.3 If a curve satisfies x⃗′′ is normal, then it has constant speed and
is a geodesic.

Proof: d
dt |x⃗

′(t)|2 = 2x⃗′′(t)·x⃗′(t) [x⃗′(t) is in the tangent space], so 2x⃗′′(t)·x⃗′(t) = 0
so |x⃗′(t)| = constant.
Therefore, we will assume a geodesic has unit speed.

Ex.
On the sphere, geodesics are great circles.
Proof: Suppose that we have a geodesic x⃗(z(t)). Assume the sphere has radius
1. x⃗ = n⃗ [point on the sphere is equal to the normal vector at that point].
⇒ x⃗′′ = f · x⃗
x⃗′′ · x⃗ = f · x⃗ · x⃗ [and x⃗ · x⃗ = 1 since we assume sphere has radius 1].
So we have x⃗′′ · x⃗ = (x⃗′ · x⃗)′ − x⃗ · x⃗′ = f . Geodesic so x⃗′ = constant (constant
velocity for geodesic) = v2. Also x⃗ · x⃗′ = 0 because x⃗′ is tangential and x⃗ is
normal.
Therefore, −x⃗′ · x⃗′ = −v2 = f and we see x⃗′′ = −v2x⃗.
vx′′ is in the same direction as x⃗ so x⃗′ × x⃗ is a constant vector: (x⃗′ × x⃗)′ =
x⃗′ × x⃗′ + x⃗′′ × x⃗ = 0 + 0 = 0, so x⃗× x is a constant vector k (derivative of it is
0, so must be a constant. Therefore, x⃗ is the great circle orthogonal to k.

Question: Is a geodesic necessarily a shortest path?
Geodesic must have stationary length, but does this imply the Geodesic has
minimal length?
Answer: Not always. Two geodesics along a circle through the diameter of the
circle: one of them has shortest length. The geodesic with shortest length is
called a “minimizing geodesic”.

A geodesic is always locally length minimizing. Fix one point along the
geodesic. Then any point sufficiently close has locally minimum length.

Theorem 12.4 Given any point p and v ∈ Tpx⃗, can find a unique geodesic
x⃗(z(t)) so that x⃗′(0) = v, x⃗(0) = p for some interval [0, τ ] consequence of the
existence of solutions to 2nd order ODEs [just setting IC for second order ode].

Theorem 12.5 x⃗(z(t)) is a geodesic, then the following equations are satisfied:
d
dtθ1(z

′(t)) + w12(z
′)θ2(z

′) = 0
d
dt (θ2(z

′(t)))− w12(z
′)θ1(z

′) = 0

(θ1(z
′))2 + (θ2(z

′))2 = constant
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First two are the “geodesic” equations and the last one to be the “energy equa-
tion”.

x⃗′′ is normal, so moving frame {e1, e2} is an adaptive frame (in the tangent
space), so x⃗′′ · e1 = 0 = x⃗′′ · e2. Therefore, x⃗′′ · e1 ⇒ x⃗′ · e1 − x⃗′ − e′1 = 0
And x⃗′ = dx⃗(z′) = (θ1e1 + θ2e2)(z

′) = θ1(z
′)e1 + θ2(z

′)e2.
So x⃗ · e1 = θ1(z

′)′.
Note The first two equations being satisfied are if and only if x⃗ is a geodesic.

Also the first two equations imply the third. Geodesic equations ⇒ energy
equations.
(θ1(z

′))2 + (θ2(z
′))2 = I(z′(t), z′(t) = | ddt x⃗(z(t))|

2.
I = dx⃗ · dx⃗ = (θ1e1 + θ2ϵ2)(θ1e1 + θ2e2)
And in an adaptive frame I = t21 + t22 so that I(z′, z′) = θ1(z

′)2 + θ2(z
′)2 ⇐⇒

x⃗(z(t)) has constant speed.

Note: dx⃗(z′) = d
dt x⃗(z(t)) [decomposition of surface map].

12.3 Geodesic Equation

13 November 15

13.1 Geodesics

Generalizing the straight line in Euclidean space to curved surfaces.

Def: Derivative of the curve projected on normal direction to the surface is
0: π⊥(Dγ · γ) = 0.
Any geodesic must satisfy the geodesic equations. The first two equations (the
geodesic equations) imply the third is a constant. We take that constant to be
1 (so the geodesic has an arclength parameterization).

13.2 Hyperbolic Space

Upper-half plane model: R× (0,∞) with the metric given by I = dx2+dy2

y2 . By

the Gauss theorem, the first fundamental form defines the Gauss curature (and
everything else that’s intrinsic about the curve).

Let θ1 = dx
y , θ2 = dy

y so that we have forms I = θ21 + θ22. w12 =?

Then using the structure equations dθ1+w12∧θ2 = 0 and dθ2−w12∧θ1 = 0,
we have d(dxy + w12 ∧ dy

y = 0 and ddy
y − w12 ∧ dx

y = 0.
The first euqation tells us w12 is a multiple of dx, and we can plug this expres-
sion into the second equation to determine the unknown coefficient. After a bit
of algebra, w12 = − 1

ydx, and Gauss Curvature is w12 = κθ1 ∧ θ2 ⇒ κ = −1
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[has constant curvature of -1 everywhere (or negative constant curvature every-
where) – opposite of the standard sphere which has positive constant curvature].

Later on, we will determine the I as a “metric”.
Consider geodesics on this space. Use the three equations to find them.

Assume

[
x(t)
y(t)

]
is a geodesic with arclength parameterization. Then it must

satisfy the 2 geodesic equations and the energy equation. Can plug in θ1, θ2, andw12

into geodesic equations to solve:

(1) x′

y

′
− x′y′

y2 = 0

(2) y′

y + x′2

y2 = 0

(3) x′2

y2 + y′2

y2 = 1 (energy eqn)

θ1 = dx
y . So z(t) =

[
x(t)
y(t)

]
, so z′(t) = x′(t) ∂

∂x + y′(t) ∂
∂y wiht dx( ∂

∂x ) = 1 and

dx( ∂
∂x ) = 0. So θ1(z

′) = dx
y (x′ ∂

∂x + y′ ∂
∂y ) =

x′

y

Now we have 3 equations (ODE) that we can solve.

(1) ⇒ ( x
′

y2 )
′ = 0. This follows from x′

y2

′
= x′′y2−x′2yy′

(y2)2 = x′′

y2 − x′2yy′

y4 ...

x′′

y − 2x′y′

y2 = 0. Therefore x′

y2 = A (i.e. a constant).

Case 1: A = 0 ⇒ x′ = 0 ⇒ x = C2. THerefore (3) ⇒ y′2

y2 = 1 ⇒ y′

y = ±1,

and therefore y = C1 · e±t. Where C1 is an arbitrary constant. x(t) = C2 and
y(t) = C1e

±t.

Consider t = 0, then x(0) = C2 and y(0) = C1, so this is the initial (starting
point) of the geodesic and the ±t means it goes in either the positive or neg-
ative direction (two ways to traverse the line). So all vertical lines are geodesics.

Case 2: A ̸= 0. (3) y′2

x′2 ⇒ 1 + y′2

x′2 = y2

x′2 = 1
A2y2 [replacing x′ = Ay2] and

using x′

y2 = A. So we see that dy
dx =

dy
dt
dx
dt

= y′

x′ [allows us to get rid of variable t

to view it as a function of y and x]. Thus, 1 + ( dydx )
2 = 1

A2y2 .

dy
dx = ±

√
1−A2y2

A2y2 and dx
dy = ( dydx )

−1 = ± Ay√
1−A2y2

, so dx = ± Ay√
1−A2y2

dy.

Then we can integrate both sides to find
x− C = ±A−1

√
1−A2y2.

(x − c)2 = A−2(1 − A2y2) and (x − c)2 + y2 = A−2 ̸= 0. which is a circle
centered at (C, 0) with radius r = A−1, so the geodesic is a half-circle in our
upper-half plane. C and A are any constants, so this geodesic encodes any half-
circle of any radius with center on the x-axis.
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For any given direction on the tangent plane, can find a unique geodesic
with this direction as its initial velocity [geodesic entirely determined by initial
point and then initial velocity].

In the hyperbolic space, you can not only solve the geodesic equation in a
small neighborhood, but you can also extend it to an infinite length.

13.3 Covariant Derivatives

In E3, a curve γ(t) parameterized by t ∈ I and we have a vector field V (t), we
say that V (t) is parallel by d

dtV (t) = 0 [derivative of the vector field is 0 ⇒ all
pointing in teh same direction ⇒ all parallel to each other].

Def. We say a tangent vectorfield V (t) along a curve z(t) on a surface x⃗ is
parallel if (π is a projection) πT ( d

dtV (t)) = 0.

Def. DefineD d
dt
V (t) = πT ( d

dtV (t) is called the covariant derivative. Project

the derivative onto the tangent space, and if the projection is 0 (i.e. doesn’t
have any velocity in the tangent direction), we say that it is a parallel vector
field. This is equivalent to saying the covariant derivative is 0. Take derivative
of vector field, and then project into the tangent space of the surface (where
x⃗(z(t)) is a curve on the surface).

γ̇ = γ′(t) = d
dt . ( d

dt is in the interval [a,b] and then taken to U by γ (for

simplicity, we say they are equivalent): γ ∗ d
dt = γ′(t) (modulus the change in

magnitude induced by γ if γ is not arclength).

Theorem 13.1 A curve γ in a surface x⃗ is a geodesic if and only if Dγ · γ̇ = 0

Proof: By definition Dγ γ̇ = πT ( ˙̇γ(t)) = 0 ⇐⇒ geodesic.

Theorem 13.2 Given a smooth curve γ on x⃗, and an initial vector v0 tangent
to the surface at γ(t0), there exists a unique parallel vector field so that v(t0) =
v0.

Proof: See donaldson. v(t) is a vector field along γ(t) = x⃗(z(t)). e1, e2 : adap-
tive frame on the surface. v(t) at every point is a tangent vector so it can
be represented as a lin. comb. of e1, e2, v(t) = a(t)e1(z(t)) + b(t)e2(z(t)).
D d

dt
v = πT d

dtv(t) ... πT (de1) = w21e2 [when projected to the tangent space,

has only vector in the e2 component].
...
v(t) = a(t)e1 + b(t)e2 gives the desired parallel vector field. We’ll call it the
parallel transport of v(t0) (i.e. v(t0) is the initial vector we specify).
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Ex. Sphere example: of note is that when you make a cycle on the sphere,
it’s possible to end with a vector different from the one you started with: the
parallel transport along a loop may change the initial vector [quite different
from the Euclidean space – this will never happen]. In E3, if you start with a
vector and parallel transport it, you get the same vector you start with, but it’s
not the same story on the sphere (starting vector is different from ending vector
after parallel transport).

Theorem 13.3 The parallel transport along loops does not change the vector if
and only if it has κ = 0.

Somehow related to Gauss curvature: if Gauss curvature is 0, you can parallel
transport across a loop without changing the ending vector from the starting
one.

Theorem 13.4 The parallel transport maintains the norm.

If the vector field changes length (i.e. magnitude) it is not considered to be
parallel. If you move it in the normal direction, then you leave the direction.
We don’t mind how the vector changes in the normal direction, as long as the
vector has no tangent components, it is considered a parallel vector field.

14 November 17

Theorem 14.1 The parallel transport does not change the initial vector if κ ≡ 0

Proof: κ = 0. Therefore dw12 = 0 and w12 is a closed 1-form. w12 = df for
some function f. Set v(t) = a(t)e1(z(t)) + b(t)e2(z(t)) where v(t) is the parallel

transport of v(0).

[
a′(t)
b′(t)

]
=

[
0 −w12(z

′)
w12(z

′) 0

] [
a(t)
b(t)

]
Therefore

[
a(t)
b(t)

]
=

[
cos

∫
z
w12 − sin

∫
z
w12

sin
∫
z
w12 cos

∫
z
w12

]
and via the fundamental theo-

rem of calculus since we’re integrating along a loop, the integral terms are 0:∫
γ1

w12 −
∫
γ2

w12 =
∫
Ω
dw12 = 0 where the two line integrals via Green’s.

15 Clairaut’s Theorem

Revolutionary surface: x⃗(u, ϕ) =

[
f(u) cosϕ
f(u) sinϕu

]
.

u ≡ constant (latitude meridian) is a geodesic if and only if fu = 0 ⇐⇒
f ′(u) = 0 so that the geodesic equations are satisfied.

Equivalently, check if a curve satisfies f cos(α) to determine if it is a geodesic.
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15.1 Geodesic Curvature

Geodesic Curvature measures how far away a curve is from being a geodesic (so
a geodesic has zero geodesic curvature).
Def. γ(t) is a unit speed curve in x⃗ : U → R3. Define kg by: D d

dt
γ′ = kg ·n⃗×γ′.

D d
dt
γ′ = πT γ′′ (projection of the second derivative on the tangent space). Note

γ′′ ⊥ n⃗, γ′ because the curve is on the surface and orthogonal to γ′ because γ′

has unit speed. kg is the geodesic curvature is the norm of this cross product.

Theorem 15.1 kg = (γ′×γ′′)·n⃗
|γ′|3 for any curve γ (not necessarily arclength).

Proof:

Theorem 15.2 Let γ(t) a curve on the surface x⃗ : U → R3. Let n⃗ = n⃗(γ(0)),

T⃗ = γ′(0), then we have:

1. Consider the curve ˆγ(t) = γ(t)− < γ(t), n⃗ > ·n⃗ [projection of γ onto the
tangent plane. – simply subtract away the normal component of the curve form
it.]
kg(0) = the planar curvature of γ̂(t) = |πT γ′(0)|
2. Consider γ̂(t) =< γ(t), T⃗ > ·T⃗+ < γ(t), n⃗ > n⃗ the projection onto the
space spanned by < T, n⃗ >. The normal curvature kn(0) is equal to the plane
curvature of γ̃(t) at γ̃(0) = γ(0).
3. κ2 = kg2 + k2n (curvature of the curve itself vs the curvature of the curve’s
projection onto two different planes). κ is the curvature of γ(t) at γ(0).

γ′′(t) not necessairly in the tangent plane – need to project it there. Planar
curvature = projected curvature of second derivative for any curve?

16 November 29

16.1 Area Form

In multivariable calculus, define the area of sufrace S ⊆ R3, X : U ⊆ R2 → S ⊆
R3. And to compute the area, we use:

∫ ∫
||x⃗uxx⃗v||dudv

Today: we would like to express this area in terms of the metric I on U. We have
an induced metric on this surface onto this domain: I = Edu2+2Fdudv+Gdv2

(want to only use the first fundamental form metric to express this area).

Suppose e1, e2 to be a positive orthogonal frame (e1×e2 = n⃗) for the tangent
space TqS. Then since e1 and e2 are normal to the surface..
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• x⃗u = ae1 + be2

• x⃗v = ce1 + de2

•

x⃗u × x⃗v = (ae1 + be2)x(ce1 + de2)

= (ad− bc) · n⃗

= det

[
a b
c d

]
· n⃗

so ||x⃗u × x⃗v|| = ||det
[
a b
c d

]
|| = det

[
a b
c d

]
if we assume x⃗ is positively orien-

tated (since n⃗ is a unit vector).

θi = ei · dx⃗
θi(

∂
∂u ) = ei · dx⃗( ∂

∂u ) = ei · vxu.

θ1(
∂
∂u ) = e1 · x⃗u = a

θ2(
∂
∂u ) = e2 · x⃗u = b

θ1(
∂
∂v ) = e1 · x⃗v = c

θ2(
∂
∂v ) = e2 · x⃗v = d

det(

[
a b
c d

]
) = det

[
θ1(

∂
∂u ) θ2(

∂
∂u )

θ1(
∂
∂v ) θ2(

∂
∂v )

]
= θ1 ∧ θ2(

∂
∂u ,

∂
∂v )

Recall: k 1-forms, θ1, ..., θk and k vectors u1, ..., uk. With θ1∧...∧θk(u1, ..., uk) =

det(

θ1(u1) ... θk(u1)
...

θ1(uk) ... θk(uk)


θ1 ∧ θ2 (two form on U) is called area form for metric I on U. θ1 ∧

θ2(
∂
∂u ,

∂
∂v ) = ||x⃗u × x⃗v||. ⇒ θ1 ∧ θ2 = ||x⃗u × x⃗v||du ∧ dv

Recall du ∧ dv( ∂
∂u ,

∂
∂v ) = 1

and that du ∧ dv is the basis of the space of 2-forms on U.
Two forms acting on the same vector (i.e. the basis vector) ( ∂

∂u ,
∂
∂v measures

the area difference (or change) from the 2-form du ∧ dv to θ1 ∧ θ2.
So θ1 ∧ θ2 measures the (signed) area of rectangels in TpU w.r.t. I. Area(S) =∫
U
θ1 ∧ θ2 =

∫
||x⃗u × x⃗v||dudv. [clearly independent of the choice of paratemer-

ization].

16.2 Minimal Surface

Consider the problem of finding a surface with smallest area (i.e. minimal sur-
face) with a given boundary. For a curve in R3, which surface has boundary
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equal to the curve, but minimum area.

Recall how to find a geodesic. A Geodesic can be viewed as a 1-dimensional
minimal surface. Fix two points, x, y and we’d like to find the minimal length
curve that joins x, y. Same idea we’ll use for minimal surfaces: give it a small
variation, but the minimal one will be the cricital point.

Given x⃗ : U ⊆ R2 → S ⊆ R3 with x⃗(∂U) = α. Where α(s) is a curve in R3.

Consider the normal variation: x⃗ϵ(u, v) = x⃗(u, v) + ϵf(u, v) · n⃗: a small per-
turbation in the normal direction where f is a smooth function, f = 0on∂U .
(∂U is the boundary of the domain). α = ∂S.

We say that S has a stationary area if d
dϵ |ϵ=0(areax⃗ϵ) = 0 for all choices of f

(f |∂U = 0). This is the 2d analogue of the Geodesic formulation (perturbations
in a “locally” straight line form a curve).

What is Iϵ (first fundamental form of x⃗ϵ. Iϵ = dx⃗ϵ · dx⃗ϵ = dx⃗ · dx⃗+ dfϵ(dx⃗ ·
dn⃗) + higher order terms (i.e. ϵ2(df⃗ · n⃗)2 – throwing out this term). Where
dx⃗ϵ = dx⃗+ d(ϵ · f(u, v) · n⃗). = dx⃗+ ϵd(f · n⃗) = dx⃗+ ϵ(df · n⃗+ f · dn⃗)
dx⃗ϵ = dx⃗+ ϵ(df · n⃗+ f · dn) (note dx⃗ · n⃗ = 0).

Observe dx⃗ · dx⃗ = I0 and ϵ(dx⃗ · dn⃗) = −I. So Iϵ = I − 2ϵf · I where I
and I are the 1st and 2nd fundamental forms of x⃗. We have that I = θ21 + θ22,
I = −(w13 · θ1 + w23 · θ2). So Iϵ = θ21 + θ22 + 2ϵf(w13 · θ1 + w23 · θ2). So So
Iϵ ≈ (θ1 + ϵfw13)

2 + (θ2 + ϵfw23)
2 +O(ϵ2) where O(ϵ2) represents forms with

order at least ϵ2 (i.e. higher order terms).
Iϵ = (θ1+ϵfw13)

2+(θ2+ϵfw23)
2. Let θ1,ϵ = (θ1+ϵfw13) and θ2,ϵ = (θ2+ϵfw23)

so we have Iϵ = θ21,ϵ + θ22,ϵ. As the 1st fundamental form has this formulation,
we can express dx⃗ϵ = θ1,ϵe1,ϵ + θ2,ϵe2,ϵ

And the area form for x⃗ϵ: θ1,ϵ ∧ θ2,ϵ = (θ1 + ϵfw13) ∧ (θ2 + ϵfw23) =
θ1 ∧ θ2 + ϵf(w13 ∧ θ2 + θ1 ∧ w23).

Write w13 = aθ1 + bθ2 and w23 = bθ1 + cθ2, and can get θ1,ϵ ∧ θ2,ϵ =

θ1 ∧ θ2 + fϵ(a+ c)θ1 ∧ θ2. Recall H = − 1
2 tr(

[
a b
b c

]
) = −1

2 (a+ c).

Then θ1,ϵ ∧ θ2,ϵ = θ1 ∧ θ2 − 2fϵHθ1 ∧ θ2 +O(ϵ2).

d
dϵ |ϵ=0θ1,ϵ∧θ2,ϵ = 0 = −2fHθ1∧θ2+0 ⇐⇒ 2fH = 0 true for all choices of

f ⇐⇒ H = 0 everywhere. This is the minimal surface equation [if a surface has
stationary length].(may not always minimize the area – geodesic is a stationary
length curve that does not always minimize the distance between two points on
a surface).
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Example: Catenoid

coshu cos vcoshu sin v
u

.
H = 0 everywhere on the catenoid. Has mixed principle curvatures: κ1 and κ2

have different signs. More precise computation reveals κ1 + κ2 = 0. So this is a
minimal surface.

Problem in our homework asking us to show the minimal surface of revolu-
tion are the catenoids (or variants of the catenoids). Only revolutionary surface
that is a minimal surface. H = 0 is the only criterion of the minimal surface.

Want to define the integral of n−forms w on an open set in U ⊆ Rn. First,
standard coordinates x1, ..., xn ∈ Rn (euclidean coordinates). dx1 ∧ .. ∧ dxn is
an n-form. We say any positive multiple of this to be positive n− forms.

Say that we choose a different coordinate in Rn y1, ..., yn is a positive coor-
dinate if dy1 ∧ .. ∧ dyn is a positive n-form.

Now if we write this yi = yi(x1, ..., xn), then dy1∧ ...∧dyn = det
[
∂yi

∂xj

]
dx1∧

... ∧ dxn.

Recall α1 ∧ ... ∧ αk(v1, ..., vk) = det

α1(v1) ... αk(v1)
... ... ..

α1(vk) ... αk(vk)


Any n− form w in Rn can be written w = h(x1, .., xn)dx1 ∧ .. ∧ dxn where

h(x1, ..., xn) is a function.
Define

∫
U
w =

∫
U
h(x1, ..., xn)dx1 ∧ ... ∧ dxn

by definition =
∫
U
h(x1, ..., xn)dx1...dxn

Note that this is well-defined, as it is independent of the choice of coordinates.

Suppose w = g(y1, .., yn)·dy1∧...∧dyn. Then
∫
U
w =

∫
U
g(y1, ..., yn)dy1...dyn

[this is by the definition]. Goal is to show
∫
U
wh(x1, ..., xn)dx1 ∧ ... ∧ dxn =∫

U
h(x1, ..., xn)dx1...dxn because then we don’t need to specifiy coordinates for

the integral to hold (it is well-defined and independent of the choice of coordi-
nates).

dy1 ∧ ...dyn = det( ∂yi

∂xj
dx1 ∧ ... ∧ dxn.

w = g(y1, ..., yn)det(
∂yi

∂xj
dx1 ∧ ... ∧ dxn

= g(y1(x1, ..., xn), yn(x1, ...xn))det(
∂yi

∂xj
dx1 ∧ .. ∧ dxn

=
∫
U
g(y1, ..., yn)dy1...dyn adn so on and so forth....
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17 December 1

Last time: Integarl of n− form w over U ⊆ Rn (n is same as degree of n-form
w).
w = h(x1, ..., xn)dx1 ∧ .. ∧ dxn

Then define
∫
U
w =

∫
U
h(x1, ..., xn)dx1...dxn if x1...xn is an orientated coordi-

nate where (dx1 ∧ ... ∧ dxn is positive). This is the definition.

Now we want to define the integral of 2-form on orientated surface S ⊆ R3.
The difference is this is not an open subset of Rn. It’s an orientated
surface.

Recall how we define integral of 1-form w over orientated curve α in Rn.∫
α
w =? when w is a 1-form defined in R3. The integral of a 1-form along a

curve:
∫
α
w =

∫ b

a
w(a′(t))dt where α′(t) is the tangent vector of α. Reparameter-

ize by α(t(s)), s ∈ [c, d]. Then
∫
α
w =

∫ d

c
w(α′(t(s))t′(s))t′(s)ds =

∫ b

a
w(α′(t))dt

which means the integral is independent of parameterization.

Similarly, if we have w 2-form on region in R3 which contains the surface s
(w is defined at least on an open neighborhood of this surface), can evaluate w
on e1, e2 (orientated orthonormal basis at each point p ∈ S). Then integrate
this function over S.∫
S
:=

∫
S
w(e1, e2)θ1 ∧ θ2 where θ1 ∧ θ2 is the area (two-)form. [This is a defini-

tion].

Take a parameterization x⃗ : U ⊆ R2 → S ⊆ R3, and “pull back” w to get
x⃗∗w 2-form on U and integrate x⃗∗w on U.

Independent of parameterization x⃗ as long as x⃗ is oriented). x⃗∗w: pull-back
of the 2-form. The integral of an open set on a 2-form is simply

∫
U
x⃗∗w as

defined last class. This is a second definition of the integral of a 2-form on a R3

surface.

Claim:
∫
S
w =

∫
U
x⃗∗w

Rest of class: define x⃗∗w pull-back.

Discussion of pull-back of k-forms from a surface.

Set-up: pull-back via a map (need a mapping). f : U ⊆ Rm → Rn (dimen-
sions are arbitrary). such that f is a smooth map. Choose x1...xm ∈ Rm and
y1...yn. Assume w is a k-form defined on a region that contains f(U). Define
f∗w as the pull-back of w along f .
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Define: f∗w(v1, ..., vk) = w(df(v1), ...df(vk)) where v1..., vk are vectors in
TpU ∀p ∈ U . Effectively, we’re moving k vectors from the tangent space such
that df(vi) ∈ Tf(p)f(U).

(1) Note that when m = 1, (w is a 1-form) U = [a, b], f = α(t). (f∗w)( ∂
∂t ) =

w(df( ∂
∂t )) = w(α′(t)), so this is the same as we defined before.

(2) Suppose w = dg. g : Rn → R, (d is a 1-form). What is f∗(dg)(v) =
dg(df(v)) = d(g ◦ f)(v).

As a consequence, we have f∗(dyi) = dyi ◦df = d(yi ◦f) = dfi. f(x1...xm) =f1(x1...xm)
...

fn(x1...xm)

. df is a vector-valued 1-form, so df(V ) is a vector.

(3) Now look at w =
∑n

i=1 ai(y1, ..., yn)dyi [general 1-form], then

Theorem 17.1 f∗w =
∑n

i=1 ai(f1, ..., fn)dfi =
∑m

j=1

∑n
i=1 ai(f1, ..., fn)

∂fi
∂xj

dxj

Proof: f∗w = f∗(
∑n

i=1 aI(y1, ..., yn)dyi) =
∑n

i=1 ai(y1, ..., yn)f
∗(dyi)

=
∑n

i=1 ai(y1, ..., yn)dfi
=

∑n
i=1 ai(y1...yn)

∑m
j=1

∂fi
∂xj

dxj

yi = fi(x1...xn) so we have
=

∑n
i=1 ai(f1...fn)

∑m
j=1

∂fi
∂xj

dxj

(x1...xm) →f (y1..., ym).
(4) f∗ preserves the wedge product. Let α1, α2 : 1 − forms. Define

f∗(α1 ∧ α2) = (f∗α1) ∧ (f∗α2).
Proof:

f∗(α1 ∧ α2)(v1, v2) = α1 ∧ α2(df(v1), df(v2)) = det

[
α1(df(v1) α1(df(v2))
α2(df(v1)) α2(df(v2))

]
=

det

[
(f∗α1)(v1) (f∗α1)(v2)
(f∗α2)(v1) (f∗α2)(v2)

]
= (f∗α1) ∧ (f∗α2)(v1, v2)

(5) f∗w =? when w = a(y1...yn)dyi1 ∧ ... ∧ dyik .∑
i1<...<ik

ai1...ikdyi1 ∧ ... ∧ dyik a general k-form.
f∗w = a(f1, ..., fn)dfi1 ∧ ... ∧ dfin .

Example. Catenoid f(u, v) =

coshu cos vcoshu sin v
u

. w = (x2
1 + x2

2)dx1 ∧ dx2

where x1x2x3 are the standard coordinates in R3

(1) f∗dx1 = df1 = d(coshu cos v) = sinhu cos vdu− coshu sin vdv
(2) f∗dx2 = df2 = d(coshu sin v) = sinhu sin vdu+ coshu cos vdv
(3) f∗(w) = f∗(x2

1+x2
2)dx1∧dx2) = (f2

1+f2
2 )df1∧df2 = cosh2 u(sinhu coshudu∧

dv) = sinhu cosh3 udu ∧ dv
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Important Theorem:

Theorem 17.2 (Stoke’s Theorem) M is a compact orientated k−dimensional
sub-manifold of Rn, ∂M (boundary of the manifold) is also orientated), suppose
w is a (k − 1)− form, and then

∫
∂M

w =
∫
M

dw.

Explanation: ∂M has k-1 dimensions (boundary has 1 less dimensions. dw is
a k form, and M is a k-dimensional surface.

Ex: M = S, surface ⊆ R3, ∂S =curve α. w : 1 − form.
∫
S
dw =

∫
∂S

w.
Integrate a 2-form on a surface or a 1-form on the boundary of the surface (i.e.
a curve).

Ex. M = B ⊆ R3 is a compact domain in R3. ∂B = S. w : 2 − form.∫
B
dw =

∫
∂B

w =
∫
S
w.

Need to choose an orientation on the boundary, and an orientation of the
manifold so the two orientations are compatible. e1×e2 = n⃗ along the boundary
of the surface (normal needs to point outwards the surface as you traverse the
boundary) – left hand side rule. e1 × e2 gives the orientation of the boundary
which is equal to the orientation of S (i.e. n⃗).

18 December 6

18.1 Pull-back of k-forms

Last time: f : U ⊆ Rm → Rn, {yi} is a coordinate, w is a k − form on a
neighborhood of f(U). Pull-back f∗w k-form on U defined by f∗w(V1, ..., Vk) =
w(df(v1), .., df(vk)). Pushing forward k vectors form the domain U (i.e. f∗w ⊆
Rm → f → Rn).

Properties:
(1) if w = dg, g : R → R, then f∗(dg) = d(g ◦ f). If w = ai(y)dyi then
f∗w = (ai ◦ f)dfi where ai are functions in y: ai(y1, ..., yn) [coefficients on y].

(2) w = α1 ∧ ... ∧ αk, αi : 1− forms. f∗w = f∗α1 ∧ ... ∧ f∗αk.

With these two properties, we know what the pullback of a general k-form
is (if the pullback is linear).

Today, a final special property (that will help us prove Stoke’s Thm for spe-
cial cases) (3) f∗(dw) = d(f∗w): The pull-back is commutative with the exterior
derivative.
Proof:
First, assume w = ady1 ∧ ... ∧ dyk where a = a(y1, ..., yn). Prove single
case. By linearailty, the rest will follow. First compute external derivative:
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dw = da ∧ dyi,1 ∧ ... ∧ dyi,k.
f∗dw = f∗(da ∧ dyi,1 ∧ ... ∧ dyi,k)
= f∗(da) ∧ f∗(dyi,1) ∧ ... ∧ f∗dyi,k
= d(a ◦ f) ∧ dfi,1 ∧ ... ∧ dfi,k
f∗w = (a ◦ f)dfi,1 ∧ ... ∧ dfi,k
d(f∗w) = d(a ◦ f) ∧ dfi,1 ∧ ... ∧ dfi,k = f∗dw
Recall d2 = 0.

Take exterior derivative and pull-back is equivalent to taking the pull-back
(and then the exterior derivative).

Theorem 18.1 (Stoke’s Theorem) M is a compact, oriented k-dimension
sub-manifold of Rn with boundary ∂M equipped with boundary orientation. If
w is a (k − 1) − form on M , then [integrating a n-form on a n-dimensional
sub-manifold]

∫
M

dw =
∫
∂M

w [integrating a k-1 form on a k-1 sub-manifold].

Proof:[For special Case]
Prove Stoke’s Theorem when k = 2 and M = S (M is a surface). Because
d(f∗w) = f∗(dw) and

∫
S
dw =

∫
U
f∗dw. when S = f(U), f is a smooth

1 − 1 map, it suffices to prove Stoke’s thm for U ⊆ R2. This is because∫
U
f∗dw =

∫
M

dw =
∫
∂M

w =
∫
∂U

f∗w and from property (3),
∫
u
d(f∗w).

Pull back k-form to nicer subset in R2 : U rather than a surface in R3. Uses∫ b

a
F (f(u))df(u) =

∫ f(b)

f(a)
F (f)df .

(1) Suppose U is a topological disk [after deformations, you can deform this
subset to a standard disk]. Proving for a single topological disk implies the
theorem holds for topological disk with finitely many holes. Used 18.02 method
for proving stoke’s theorem (reduction by opposite orientated lines splitting up
the surface).

(2) Suppose U is a region between two graphs g1(x) ≤ y ≤ g2(x) where
a ≤ x ≤ b. All topological disks can be divided into the regions in (2) [follows
from implicit function theorem]. Therefore, only need to prove Stoke’s for these
“nicer” regions.

Goal:
∫
U
dw =

∫
∂U

w. Assume w = P (x, y)dx+Q(x, y)dy. dw = dP (x, y)∧
dx+ dQ(x, y) ∧ dy
dw = ∂P

∂y dy ∧ dx+ ∂Q
∂x dx∧ dy = ∂Q

∂x − ∂P
∂y )dxdy. Now −

∫
U

∂P
∂y dx∧ dy [assumed

it was bounded by two graphs, so now can use multi-integration formula].

= −
∫
U

∂P
∂y dxdy = −

∫ b

a
(
∫ g2(x)

g1(x)
∂P
∂y (x, y)dy)dx = −

∫ b

a
P (x, y)|g2(x)g1(x)

dx = −
∫ b

a
P (x, g2(x)−

P (x, g1(x))dx.∫
γ1

Pdx =
∫ b

a
P (x, g1(x))dx [γ1 is the curve along the boundary].∫

γ2
Pdx = −

∫ b

a
P (x, g2(x))dx [γ2 is the curve along the boundary].
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So −
∫ b

a
P (x, g2(x)− P (x, g1(x))dx =

∫
γ1∪γ2

Pdx =
∫
∂U

Pdx.

Now need to check to see if it’s true for Q as well. Can simply prove∫
U

∂Q
∂x dx ∧ dy =

∫
∂U

Qdy.

Proved Stoke’s Thm for k = 2 and M = S (surface). This isn’t exactly
rigorous... For surfaces which are not topological disks.

Stoke’s for higher dimensions: k = 3, k − 1 = 2. 2-form in R3 : w =
Pdy∧dz+Qdz∧dx+Rdx∧dy. Where P (x, y, z). Can express any 2-form in this
way as dx, dy, dz forms basis of 2-forms. Then dw = (∂P∂x + ∂P

∂x + ∂P
∂x )dx∧dy∧dz

[3-form].

Consider compact domain B ⊆ R3. ∂B = S is a smooth surface. Stoke’s
thm ⇒

∫
B
dw =

∫
S
w.∫

B
dw =

∫
B
(∂P∂x + ∂P

∂x + ∂P
∂x )dx ∧ dy ∧ dz.

∫
S
w =

∫
S
Pdy ∧ dz +Qdz ∧ dx+

Rdx ∧ dy =
∫
S
(P,Q,R) · n⃗dA.

Note V = (P,Q,R), we say divV = (∂P∂x + ∂P
∂x + ∂P

∂x ) [called the divergence
of a vector field V].

∫
B
divV =

∫
S
V · n⃗ [Special case of Stoke’s is called the

divergence theorem (or Gauss’ theorem)].

Ex. Use Stoke’s formula to compute the area of an ellipse: x2

4 + y2

9 = 1.

Recall:
∫
∂U

Pdx+Qdy =
∫
U
(−∂P

∂x + ∂Q
∂y )dx∧dy. Want to integrate some 2-form

on this two dimensional space, but Green’s tells we can convert this to a line
integral on a 1-dimensional subspace. x = 2 cos θ, y = 3 sin θ θ ∈ [0, 2π], so area
in this domain is A =

∫
U
dxdy =

∫
U
dx ∧ dy =

∫
U
d(xdy). Take w = xdy, then∫

α
w =

∫ 2π

0
2 cos θ3 cos θdθ = 6π So Area = 6π.

19 December 8

19.1 Stoke’s

Stoke’s formula. w : (k − 1)−form in a neighborhood of Mk.
∫
M

dw =
∫
∂M

w.

Ex. x⃗ : [0, π]× [0, 2π] → R3. x⃗(ϕ, θ) =

a sinϕ cos θ
b sinϕ sin θ
c cosϕ

 where x
a
2 + y

b
2
+ z

c
2 = 1.

Want to compute the area of the ellipsoid:

takew = ddy∧dz, then dw = dx∧dy∧dz. Then
∫
M

dx∧dy∧dz =
∫
∂M

xdy∧dz
where LHS is the volume of M because (dx ∧ dy ∧ dz is the Euclidean volume).

=
∫
M

dxdydz
(1) xdy ∧ dz =?dθ ∧ dϕ
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(2)
∫
∂M

xdy ∧ dz =
∫ 2π

0

∫ π

0
?dθ ∧ dϕ.

(3) Vol(M) = πabc, in particular, when a = b = c = r, then Vol(M) = πr3

If this is a problem in the final exam, you’ll need to use Stoke’s for-
mula.

Note the w = xdy∧ dz (or −ydx∧ dz) These two two-forms are not equal to
each other, but their integral on the curve are the same. If two two-forms have
the same exterior derivative, then they must have the same integral by Stoke’s
formula.

Theorem 19.1 If dw = 0, then
∫
∂M

= 0.

19.2 Gauss-Bonnet Theorem

Theorem in Riemann manifolds, it has higher-dimensional wordings, but in this
class we focus on lower-dimensions.

Let S be an orientated, compact surface in R3 (with boundary).
Goal: Relate the integral of the Gauss Curvature:

∫
S
kdA [dA is the area form]

to some geometric data on the boundary as well as the topology of the surface.

Proposition 19.1.1 vx : U ⊆ R2 → S ⊆ R3. x⃗ = x⃗(u, v). Let α(s) be a curve
in S [arclength parameterized].

Curve on the definition domain: x⃗(γ(s)) = α(s) Curve from U mapped to S
by x⃗.

Let e1, e2 be an adaptive frame on S. Then α′(s) = cos(ϕ(s))e1+sin(ϕ(s))e2.
Can choose a function ϕ(s) to ensure the tangent vector has this form: α′(s) =
a(s)e1 + b(s)e2 and have α′(s) = 1 = a2(s) + b2(s) = 1 since arclength parame-
terization. Can find ϕ(s) such that cos(ϕ(s))+ sin(ϕ(s)) equals 1. For instance,
simply let ϕ(s) = arccos(a(s)).

ϕ(s) is the angle between e1 and α′(s).

Let w12 be the connection form determined by {e1, e2} adaptive frame. Re-
call: dw12 = kθ1 ∧ θ2. We denote κg(s) to be the geodesic curvature of α(s).
Recall [curvature as a curve in R3 κ2 = κ2

n + κ2
g.

Proposition: κg(s) = ϕ′(s)− w12(γ
′(s)).

w12 is a 1-form on domain U.
Proof:
α′(s) = T (s). Then T ′(s) = κ(s)N(s). α(s) is arclength, so this is the frenet eq.
κ is the curvature of γ(s). κ(s)N(s) = κg(s)h(s) + κn(s)n⃗(s) has the previous
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decomposition. h⃗(s) : is the unit vector tangent to S obtained by rotating T (s)
counter-clockwise by 90◦ [orthogonal to both T(s) and N(s)]. n⃗ is the surface
normal. κn = κ cos θ and κg = κ sin θ is more precise than κ2 = κ2

g + κ2
n

T ′(s) = (− sin(ϕ(s))e1+cos(ϕ(s))e2)ϕ
′(s)+cosϕ(s)de1(α

′(s))+sinϕ(s)de2(α
′(s))

[uses T (s) = α′(s) = d
ds cos(ϕ(s))e1 + sin(ϕ(s))e2]

Where de1(α
′(s)) = d

dse1(α(s))

T ′(s) · h(s) = κ(s)N(s) · h(s) = κg(s)

kg(s) = T ′(s)·⃗h(s) = (− sinϕ(s)e1+cosϕ(s)e2)ϕ
′(s)·h(s)+cos(ϕ(s))de1(α

′(s))+

sinϕ(s)de2(α
′(s)) · h⃗(s) Where (− sinϕ(s)e1 + cosϕ(s)e2) = h⃗(s).

T (s) : (cosϕ(s), sin(ϕ(s))

h⃗(s) = (− sinϕ(s), cosϕ(s))

= h⃗(s) · ϕ(s) · h⃗(s) + (cos(ϕ(s))de1(α
′(s)) + sinϕ(s)de2(α

′(s))) · h(s)
= h⃗(s) · ϕ(s) · h⃗(s) + (cos(ϕ(s))de1(α

′(s)) + sinϕ(s)de2(α
′(s))) · (− sinϕ(s)e1 +

cosϕ(s)e2
and de1 · e2 = −w12 = −de2 · e1
= ϕ′(s)− w12(γ

′(s)).

dx⃗(γ′(s)) = α′(s) where γ′(s) is a pull-back of α′(s) ⇐⇒ α′(s) is push-
forward of γ′(s).

Proved that κg(s) = ϕ′(s)− w12(γ
′(s)).

γ : closed curve. γ : [a, b] → U γ(a) = γ(b).
∫
γ
κg +

∫
γ
w12(γ

′(s)) =∫
γ
ϕ′(s) = 2π =

∫ b

a
ϕ′(s)ds = ϕ(b)− ϕ(a). Here we choose e1, e2 to be the coor-

dinate vector in R2: e1 =

[
1
0

]
and e2 =

[
0
1

]
.

Stoke’s formula: dw12 = kθ1 ∧ θ2. So
∫
γ
κg +

∫
ω
κθ1 ∧ θ2 = 2π where∫

ω
κθ1 ∧ θ2 = 0 because Gauss curvature is 0 on the inside (b/c is a plane).

Therefore,
∫
γ
κg = 2π for a simple self-intersecting curve in R2. This is an

invariant for curves (topological invariant).

More generally, if γ has intersection number = k, then
∫
γ
κg = 2κπ (inter-

section number is the number of times it goes around s.t. both ends connect
with each other).

Suppose you have another simple closed curve on the plane that is not

smooth γ (is piece-wise smooth). Then
∫
γ
κg +0 =

∫ b

a
ϕ′(s)ds ̸= ϕ(b)−ϕ(a) be-

cause this function is not continuous. We actually have ϕ1+ϕ2+ϕ3+
∫ b

a
ϕ′(s)ds =

2π [integral along the smooth part of the curve]. ϕ1, ϕ2, ϕ3 is how much the an-
gle changes on the non-smooth parts of the curve.
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∫ b

a
ϕ′(s)ds = 2π − (ϕ1 + ϕ2 + ϕ3) =

∫
γ
κg = θ1 + θ2 + θ3 − π (π = ϕi + θi).

More generally, on a surface, if the curvature is κ, then
∫
γ
κg +

∫
ω
κdA =

ϕ1 + ϕ2 + ϕ3 − π [assume γ has 3 points of discontinuity where the surface
bounded by the boundary is ω].

Gauss Bonnet Theorem: For any surface,
∫
S
κdA +

∫
∂S

κg = 2πχ(s).
where χ(s) is called the Euler characteristic number of the surface. Euler char-
acteristic number = v − e + f v: number of vertices, e: number of sides, f:
number of faces. χ(s) = 2− 2κ.

χ(s) =


1 disk

2 sphere

0 annulus

.

For surfaces without boundary, χ(s) = 2− 2k [is given without boundary].
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